版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、因式分解【奥赛花絮】最早的数学竞赛匈牙利是举办中学数学竞赛最早的国家,自 1894 年匈牙利物理数学学会通过了关于举行中学生奥林匹克数学竞赛的决议起, 每年十月举行这种竞赛。 仅仅由于两次世界大战和 1956 年的匈牙利时件间断过 7 年。 2003 年举行的是第 103 届匈牙利数学竞赛。【奥赛赛点】将一个多项式化为几个整式的积的形式, 叫做因式分解。 因式分解是一种重要的恒等变形, 在数学中有广泛的应用。 因式分解的方法比较多, 除了课本介绍的提公因式法,公式法,十字相乘法,分组分解法外,我们还要掌握换元法 ,主元法 ,配方法 , 待定系数法等。【解题思路与技巧 】1换元法 .在解题的过程
2、中, 我们常把某个比较复杂的代数式看成一个整体,将它用一个字母来代替,从而简化这个代数式的结构,这种方法就是换元法.在因式分解中用换元法, 又可细分为整体代换 (如例 1,例 2),对称代换(如例 3),倒数代换(如例 4),平均代换(如例 5)等 .2主元法在分解一个含有多个字母的多项式时,我们常选择一个字母作为主要元素,将其他字母看作常数, 然后将多项式按选定的字母降幂排列, 这种方法叫做主元法。用主元法往往可以得到恰当的分组,从而找出公因式来,如例6。3配方法通过添项,拆项利用公式将一个多项式配成一个完全平方, 是一种常用的恒等变形技巧,以便利用公式来分解因式,如例 7,例 8。4待定系
3、数法在解决有关多项式时,可先假定问题的结果已经求出,其中含有未知系数,然后根据多项式恒等的定义或性质,列出含有这些未知数的方程或方程组,通过解方程或方程组,求出未知系数的值,从而解决问题的方法,如例9,例 10。【典型示例】例 1 (1994 年第 6 届 “五羊杯 ”数学竞赛试题 ) 在有理数范围内分解因式:( 1) 16(6x-1)(2x-1)(3x+1)(x-1)+25=( 2) (6x-1)(2x-1)(3x-1)(x-1)+x 2=.4( 3) (6x-1)(4x-1)(3x-1)(x-1)+9x =. 解 (1)原式 =(6x-1)(4x-2)(6x+2)(4x+4)+25=(24
4、x 2-16x+2) (24x2-16x-8)+25 设 24x2-16x+2=t, 原式 =t(t-10)+25=(t-5) 2=(24x2-16x-3)2( 2)原式 =(6x-1) (x-1) (2x-1)(3x-1) +x 2=(6x2-7x+1)(6x2-5x+1) +x2设 6x2-7x+1=t, 原式 =t(t-2x) +x 2=(t-x) 2=(6x2-6x+1)2( 3)原式 =(6x-1) (x-1) (4x-1)(3x-1) +9x 4 =(6x2-7x+1) (12x2-7x+1)+ 9x4 设 6x2-7x+1=t, 原式 =t(6x2+t)+ 9x 4=(t+3x
5、2)2=(9x2-7x+1) 2例 2 (2000 年第 12 届“五羊杯 ”数学竞赛试题 )分解因式: (2x 3y)3 + (3x2y)3 125(xy)3=. 解 设 2x 3y=a, 3x 2y=b, -5x+5y=c,显然 a+b+c=0.333222由公式 a+b +c -3abc=(a+b+c)(a +b +c -bc-ca-ab) 知此时有a3+b3+c3=3abc,故有原式 =3(2x 3y) (3x2y) (-5x+5y)=-15(2x 3y) (3x2y)(x-y)例 3 ( 1997-1998 年天津市初二数学竞赛决赛试题)12分解因式 xy(xy+1)+(xy+3)-
6、2(x+y+)-(x+y-1) 解 设 xy=a, x+y=b.22222原式 =a(a+1)+(a+3)-2b-1-(b-1) =a +2a+1-b =(a+1) -b =(a+1+b)(a+1-b)例 4(1991 年贵州省初中数学竞赛试题)分解因式: x4+x3-4x2+x+1 解 原式 = x2 ( x x24112 ) x2 (x1) ( x212) 4xxxx设1122xt, 则 x2xt2,x原式 =x2(t+t2-2-4)= x2(t+3)(t-2)= x2 ( x 13)( x12) =(x2+3x+1)(x-1) 2xx例 5 ( 1994 年石家庄市初中数学竞赛试题)分解
7、因式 (x+1)4+(x+3)4-272 解 x+2=t, 原式 =(t-1)4+(t+1)4-272=2t4+12t2-270=2(t2+15)( t2-9) =2(x2+4x+19)(x+5)(x-1)例 6(1998-1999 年天津市初二数学竞赛预赛试题)把 2x3-x2z-4x2y+2xyz+2xy 2-y2z 分解因式 解 原式 =(2x-z)y2 -2(2x-z)xy+(2x-z)x 2=(2x-z)(y-x) 2例 7 ( 1986 年扬州市数学竞赛试题)因式分解: (1+y)2-2x2(1+y2)+x4(1-y)2 解 原式 =(1+y) 2+2x2(1-y2)+x4(1-y
8、)2-4x 2=(1+y)+x 2(1-y) 2-(2x)2 =(1+y)+x 2(1-y)+2x (1+y)+x 2(1-y)-2x=(x+1) 2-y(x 2-1) (x-1) 2-y(x 2-1) =(x+1)(x-xy+y+1)(x-1)(x-xy-y-1)例 8 ( 1986 年广州,武汉,福州,合肥,重庆五市初中数学联赛试题)若 a 为正整数,则 a4-3a2+9 是质数还是合数?给出你的证明。 解 a4-3a2+9= a4+6a2+9-9a2=( a2+3)2-(3a)2=( a2 +3a+3)( a2-3a+3) =( a2+3a+3)( a-1)(a-2)+1当 a=1 时,
9、 a4 -3a2 +9=7 是质数;当 a=2 时, a4 -3a2 +9=13 是质数;当 a>2 时, a2 +3a+3>1, ( a-1)(a-2)+1>1,故 a4-3a2+9 是合数。例 9 (2002 年太原市初中数学竞赛试题 )关于 x,y 的二次式x 2+7xy+my 2-5x+43y-24 可分解为两个一次因式的乘积,则m的值是. 解 设 x2+7xy+my 2-5x+43y-24=(x+ay+b)(x+cy+d) ,即 x2+7xy+my2 -5x+43y-24=x2+(a+c)xy+acy2+(b+d)x+(ad+bc)y+bd比较对应项的系数,得,a+
10、c = 7(1)ac = m(2)b+d = -5(3)ad+bc = 43(4)bd = -24(5)由 (3),(5)解得 b = 3,d = -8 或 b = -8,d = 3 当 b = 3,d = -8 时, (4)式为-8a+3c=43(6)由 (1),(6)解得 a=-2,c=9. 故 m=ac=-18当 b = -8,d = 3 时,可以得到同样的结果。例 10 (1963 年北京市中学生数学竞赛高二第二试试题)已知多项式 x3+bx2+cx+d 的系数都是整数并且 bd+cd,证明:这多项式不能分解为两个整系数多项式的乘积。 解 1 因为 bd+cd=d(b+c)是奇数 ,故
11、 b+c 和 d 都是奇数。( A)若 b 是偶数, c 是奇数。设 x3+bx2 +cx+d 可以分解成两个整系数多项式的乘积,显然一定有一个是一次因式,因为首项系数是 1,不妨设x3+bx2+cx+d = (x+p)(x 2+qx+r), 其中 p,q,r 都是整数。故有x3+bx2+cx+d = x3+(p+q)x2 +(pq+r)x+d(1)比较 (1)式两边的系数,得pr = d 为奇数(2)pq+r = c 为奇数(3)p+q = b 为偶数(4)由 (2)知 p,r 都是奇数,再由 (3), q 为偶数;这样一来, (4)式就矛盾了。( B)若 b 是奇数, c 是偶数。可以同样
12、地推出矛盾来。所以 x3+bx2+cx+d 不能分解为两个整系数多项式的乘积。 解 2 设 x3+bx2+cx+d = (x+p)(x 2+qx+r), 其中 p,q,r 都是整数取 x=1,上式左边 =1+b+c+d 是一个奇数,而右边的因式 x+p=1+p 是一个偶数。 3 2【拓展练习】一 选择题1(2002 年第 13 届 “希望杯 ”数学竞赛试题 )下列各式分解因式后,可表示为一次因式乘积的是().( A) x 3-9x2+27x-27( B) x3-x2+27x-27(C)x4-x 3+27x-27( D)x3-3x2+9x-27 2(1985 年上海市初中数学竞赛试题 )x2y-
13、y2z+z2x-x 2z+y2x+z2y-2xyz 因式分解之后,正确的结果为() .( A) (y-z)(x+y)(x-z)(B) (y-z)(x-y)(x+z)( C) (y+z)(x-y)(x+z)(D) (x+z) (x+y) (x-z)3(2002 年北京市数学竞赛预赛试题)a4+4 分解因式的结果是() .) (2)2( A) ( a2) 2(B( C) ( a2+2a-2 (a -2a+2)() (a +2a-2(a -2a-2)) 2D2)2+2a+2 (a -2a-2)a +2a+2(a -2a+2)4 (1997 年第 8 届 “希望杯 ”数学竞赛初二第二试试题 )把多项式
14、 x2-y2-2x-4y-3 因式分解之后,正确的结果是() .( A) (x+y+3)(x-y-1)(B) (x+y-1)(x-y+3)( C) (x+y-3)(x-y+1)(D) (x+y+1)(x-y-3)5(1990 年“缙云杯 ”数学竞赛试题 )在 1 到 100 之间若存在整数 n,使 x2+x-n 能分解为两个整系数一次式之积,这样的 n 有()个 .(A) 0(B) 1(C) 2(D) 9二 填空题1(2000 年第 12 届 “五羊杯 ”数学竞赛试题 )分解因式: (x 2)3 (y 2)3 (xy)3=.2(2002 年河南省数学竞赛试题)分解因式: x4+2x3+3x2+
15、2x+1=.3(1998 年第 9 届“希望杯 ”数学竞赛初二第二试试题 )把代数式 (x+y-2xy)(x+y-2)+(xy-1) 2 分解成因式的乘积应当是.4(2000 年第 13 届 “五羊杯 ”数学竞赛试题 )分解因式:( x4-4x2 )424.+1(x +3x+1)+10x =5(1999 年天津市数学竞赛试题)k 为时,多项式 x2-2xy+ky2 +3x-5y+2能分解为两个一次因式的乘积三 解答题1(1998 年天津市数学竞赛试题 )分解因式: (x+1)(x+2)(x+3)(x+6)+x 22(1992 年沈阳市数学竞赛试题)444222222分解因式: x +y +z
16、-2x y -2y z -2z x一个自然数 a 恰好等于另一个自然数 b 的平方,则称自然数 a 为完全平方数, 如64=82, 64 就是一个完全平方数,若 a=19952+19952×19962+19962,求证: a 是一个完全平方数。4(1994 年“祖冲之杯 ”数学邀请赛试题 )已知乘法公式a5+b5=(a+b)(a4-a3b+a2b2-ab3+b4) , a5-b5=(a-b)(a4+a3b+a2b2+ab3+b4),利用或不利用上述公式,分解因式:x8+x6+x4+x2+1.5.(第 17 届江苏省初二数学竞赛第二试试题)多项式 x2-(a+5)x+5a-1 能分解为
17、两个一次因式 (x+b),(x+c) 的乘积 ,则 a 的值应为多少?【拓展练习答案】一选择题1. D. 易知 x 3-3x2+9x-27=(x-3) 3,而其它三式中都含有二次因式。2. A. x2y-y 2z+z2x-x2z+y2x+z2y-2xyz=(y-z) x 2+( y2-2yz+z2)x-yz(y- z) =(y-z)x 2+(y-z)x-yz= (y-z)(x+y)(x-z)3. D. a4+4= (a4+4a2+4)-4a2=( a2+2)2-(2a)2=(a2+2a+2)(a2-2a+2)4. D. x2-y2-2x-4y-3= (x 2-2x+1) (y2+4y+4) =
18、(x-1) 2-(y+2)2=(x+y+1)(x-y-3)5D. 设 x2+x-n=(x-a)(x+b)= x 2-(a-b)x-ab, 故 a-b=-1,ab=n.于是 n 为两个连续整数之积,在 1 到 100 之间,有 2,6,12,20, 30,42, 56,72,90 共 9 个。二填空题13(x-2)(y-2)(x-y).仿例 2 的方法解 .2(x2+x+1)2 .仿例 4 的方法解 .3(x-1) 2(y-1)2.仿例 3 的方法解 .4(x2+1)2(x2+x+1) (x 2-x+1). 设 x4-4x2+1=t,( x4-4x2+1) (x4+3x2+1)+10x4=t(t+7x 2)+ 10x4=(t+2x 2) (t+5x2)= (x4+2x2+1) (x4+x2+1)= (x 2+1)2(x2+x+1) (x 2-x+1)5-3. 因 x 2+3x+2 =(x+1)(x+2), 故可设 x2-2xy+ky 2+3x-5y+2=(x+my+1)(x+ny+2),即 x2-2xy+ky 2+3x-5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 市场服务合同
- 2026年六盘水市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(a卷)
- 印花税购销合同
- 人寿电子合同
- 船员聘任合同
- 2026年乌兰察布职业学院单招综合素质考试题库附答案
- 河北省2025年职业院校“西餐烹饪”技能大赛参考试题库(含答案)
- 2025年注安管理考试试题及答案
- 2025-2030民办心理咨询培训行业市场格局及投资价值分析报告
- 2025-2030民办幼儿园行业发展趋势调研及竞争格局与投资可行性报告
- 2025年商务部面试热点问题集萃
- T-EJCCCSE 197-2025 系统窗施工技术规范
- 环卫驾驶员安全知识培训课件
- 不锈钢水箱安装施工方案(3篇)
- 卫生院药房专业知识培训课件
- correlation 测量相关性模板
- 山西农行笔试题目及答案
- 第三单元 分数除法 (讲义)-2025-2026学年六年级上册数学人教版
- 工厂玩手机管理办法规定
- DB35∕T 2169-2024 仲裁庭数字化建设规范
- 2025年福建省国有资产管理有限公司人员招聘笔试备考试题及答案
评论
0/150
提交评论