



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一次函数知识点梳理1、正比例函数一般地,形如y=kx(k 是常数, k0)的函数叫做正比例函数,其中k 叫做比例系数 .2、正比例函数图象和性质一般地,正比例函数 y=kx ( k 为常数, k0)的图象是一条经过原点和( 1,k )的一条直线,我们称它为直线 y=kx. 当 k>0 时,直线 y=kx 经过第一、三象限,从左向右上升,即随着 x 的增大, y 也增大;当 k<0 时,直线 y=kx 经过第二、四象限,从左向右下降,即随着 x 的增大 y 反而减小 .3、正比例函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式y=kx(k 0)中的常数骤是:( 1)设出
2、含有待定系数的函数解析式y=kx(k 0);( 2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数方程;k,其基本步k 的一元一次( 3)解方程,求出待定系数 k;( 4)将求得的待定系数的值代回解析式.4、一次函数一般地,形如y=kx b(k,b 是常数, k0),那么 y 叫做 x 的一次函数 .当 b=0 时, y=kxb 即 y=kx ,所以说正比例函数是一种特殊的一次函数.5、一次函数的图象( 1)一次函数y=kx b(k 0)的图象是经过(0, b )和 两点的一条直线,因此一次函数 y=kx b 的图象也称为直线y=kx b.( 2)一次函数 y=kx b 的图象的画
3、法 .根据几何知识: 经过两点能画出一条直线, 并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:( 0 ,b), . 即横坐标或纵坐标为 0的点 .6、正比例函数与一次函数图象之间的关系一次函数 y=kx b 的图象是一条直线, 它可以看作是由直线 y=kx平移 |b| 个单位长度而得到(当 b>0 时,向上平移;当b<0 时,向下平移) .7、直线 y=kx b 的图象和性质与k、 b 的关系如下表所示:k>0,b>0经过第一、二、三象限k>0,b<0经过第一、三、四
4、象限k>0,b=0经过第一、三象限k>0 时,图象从左到右上升,y 随 x 的增大而增大k<0b>0 经过第一、二、四象限k<0,b<0经过第二、三、四象限K,0,b=0经过第二、四象限k<0图象从左到右下降,y 随 x 的增大而减小8、直线 y1=kx b 与 y2=kx 图象的位置关系:(1) 当 b>0 时,将 y2=kx 图象向 x 轴上方平移 b 个单位,就得到 y1=kx b 的图象(2) 当 b<0 时,将 y2=kx 图象向 x 轴下方平移b 个单位,就得到了y1=kx b 的图象9、直线 l1: y1=k1x b1 与 l
5、2:y2=k2x b2 的位置关系可由其解析式中的比例系数和常数来确定:当 k1k2时, l1 与 l2 相交,交点是 (0 , b) 10 、直线 y=kx b(k 0)与坐标轴的交点(1) 直线 y=kx 与 x 轴、 y 轴的交点都是 (0 , 0) ;(2) 直线 y=kx b 与 x 轴交点坐标为 ( , 0) 与 y 轴交点坐标为 (0 , b) 一次函数知识点梳理三1、变量: 在一个变化过程中可以取不同数值的量。常量: 在一个变化过程中只能取同一数值的量。2、函数: 一般的,在一个变化过程中,如果有两个变量x 和 y,并且对于 x 的每一个确定的值, y 都有唯一确定的值与其对应
6、,那么我们就把x 称为自变量 ,把 y 称为因变量 , y 是 x 的函数 。* 判断 Y 是否为 X 的函数,只要看X 取值确定的时候, Y 是否有唯一确定的值与之对应3、定义域: 一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。4、确定函数定义域的方法:( 1)关系式为整式时,函数定义域为全体实数;( 2)关系式含有分式时,分式的分母不等于零;( 3)关系式含有二次根式时,被开放方数大于等于零;( 4)关系式中含有指数为零的式子时,底数不等于零;( 5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。5、函数的解析式: 用含有表示自变量的字母的代数式表示因变量的式子叫
7、做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。解析式法: 简单明了, 能够准确地反映整个变化过程中自变量与函数之间的
8、相依关系,但有些实际问题中的函数关系,不能用解析式表示。图象法:形象直观,但只能近似地表达两个变量之间的函数关系。2. 一次函数1、一次函数的定义一般地,形如 y kx b ( k , b 是常数,且 k 0 )的函数,叫做一次函数,其中 x 是自变量。当 b 0 时,一次函数 y kx ,又叫做正比例函数。一次函数的解析式的形式是 y kx b ,要判断一个函数是否是一次函数,就是判断是否能化成以上形式当 b0 , k0 时, ykx 仍是一次函数当 b0 , k 0 时,它不是一次函数正比例函数是一次函数的特例,一次函数包括正比例函数2、正比例函数及性质一般地,形如y=kx(k是常数,k0
9、)的函数叫做正比例函数,其中k 叫做比例系数.注:正比例函数一般形式y=kx (k不为零) k 不为零 x 指数为1 b 取零当 k>0 时,直线y=kx经过三、一象限,从左向右上升,即随x 的增大y 也增大;当 k<0 时, ?直线y=kx经过二、四象限,从左向右下降,即随x 增大y 反而减小(1) 解析式 : y=kx (k 是常数, k 0)(2) 必过点 :( 0,0)、( 1, k)(3) 走向: k>0 时,图像经过一、三象限;k<0 时, ?图像经过二、四象限(4) 增减性 : k>0,y 随 x 的增大而增大; k<0,y 随 x 增大而减小
10、(5) 倾斜度 : |k| 越大,越接近 y 轴; |k| 越小,越接近 x 轴3、一次函数及性质一般地,形如 y=kx b(k,b 是常数,k0),那么 y 叫做 x 的一次函数 .当 b=0 时,y=kxb即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式y=kx+b (k不为零) k 不为零 x 指数为1 b 取任意实数一次函数 y=kx+b 的图象是经过( 0, b)和( - b ,0)两点的一条直线,我们称它 k为直线 y=kx+b, 它可以看作由直线 y=kx 平移 |b| 个单位长度得到 (.当 b>0 时,向上平移;当 b<0 时,向下平移)(
11、1)解析式 :y=kx+b(k 、 b 是常数, k0)(2)必过点 :( 0, b)和( - b , 0)k( 3)走向: k>0 ,图象经过第一、三象限; k<0,图象经过第二、四象限b>0,图象经过第一、二象限; b<0,图象经过第三、四象限k0k0b直线经过第一、二、三象限b直线经过第一、三、四象限00k0k0b直线经过第一、二、四象限b直线经过第二、三、四象限00(4)增减性 : k>0 , y 随 x 的增大而增大; k<0,y 随 x 增大而减小 .(5)倾斜度 :|k| 越大,图象越接近于y 轴; |k| 越小,图象越接近于x 轴.( 6)图
12、像的平移 : 当 b>0 时,将直线 y=kx 的图象向上平移 b 个单位;当 b<0 时,将直线 y=kx 的图象向下平移 b 个单位 .一次kkxb k 0函数k ,k0k0bb 0b0b0b 0b0符号b 0yyyyyy图象OxOxOxOxOxOx性质y 随 x 的增大而增大y 随 x 的增大而减小4、一次函数y=kx b 的图象的画法 .根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0 的点.b>0b<
13、0b=0经过第一、二、三象限经过第一、三、四象限经过第一、三象限k>0图象从左到右上升,y 随 x 的增大而增大经过第一、二、四象限经过第二、三、四象限经过第二、四象限k<0图象从左到右下降,y 随 x 的增大而减小5、正比例函数与一次函数之间的关系一次函数 y=kx b 的图象是一条直线,它可以看作是由直线y=kx 平移 |b| 个单位长度而得到(当 b>0 时,向上平移;当 b<0 时,向下平移)6、正比例函数和一次函数及性质正比例函数一次函数概念一般地,形如 y=kx(k 是常数,一般地,形如 y=kx b(k,b 是常数, k0),k 0)的函数叫做正比例函数,
14、 其那么 y 叫做 x 的一次函数 .当 b=0 时,是 y=kx ,中 k 叫做比例系数所以说正比例函数是一种特殊的一次函数.自变量X 为全体实数范围图象一条直线必过点(0,0)、( 1, k)b, 0)(0, b)和( -k走向k>0 时,直线经过一、三象限;k 0, b0, 直线经过第一、二、三象限k<0 时,直线经过二、四象限k 0, b0 直线经过第一、三、四象限k 0, b0 直线经过第一、二、四象限k 0, b0 直线经过第二、三、四象限增减性k>0,y 随 x 的增大而增大;(从左向右上升)k<0,y 随 x 的增大而减小。(从左向右下降)倾斜度|k| 越大,越接近 y 轴; |k| 越小,越接近 x 轴图像的b>0 时,将直线 y=kx 的图象向上平移b 个单平 移位;b<0 时,将直线 y=kx 的图象向下平移b 个单位.6、直线 y k1 xb1 ( k10 )与 y k 2 x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届山东省平邑县中考试题猜想语文试卷含解析
- 有关不期而遇的温暖的初一作文范文700字(7篇)
- 2026届广西玉林市重点达标名校中考猜题语文试卷含解析
- 农村土地利用与农业种植合作协议
- 工业废气催化燃烧技术在汽车尾气处理中的应用研究报告
- 电商平台售后服务与用户口碑传播策略报告
- 绿色金融债券市场发行政策调整对投资收益的影响研究报告
- 数字艺术作品版权交易市场潜力研究报告:2025年行业增长动力分析
- 2025年基层医疗卫生机构信息化建设对医疗安全的影响研究
- 中国农牧业机械产品行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 浙江省杭州市滨江区2023-2024学年八年级下学期期末科学试题(原卷版)
- 蓝色国家科学基金4.3杰青优青人才科学基金答辩模板
- YYT 0657-2017 医用离心机行业标准
- NB-T+10242-2019水电工程建设征地实物指标分类编码规范
- 四川省成都市新都区新都一中学实验学校2024-2025学年上学期七年级分班(奖学金)模拟数学试题
- 投标资格承诺声明函(完整版)
- 康复科诊疗方案及流程
- 志愿服务与志愿者精神知识考试题库大全(含答案)
- 普通高中学业水平合格性考试(会考)语文试题(附答案)
- 氢自由基湮灭剂叔丁醇的作用
- (完整文档版)体检中心入职体检报告范本
评论
0/150
提交评论