付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 间接证明-反证法1教学目标:知识与技能:结合已经学过的数学实例,了解间接证明的一种基本方法反证法;了解反证法的思考过程、特点。过程与方法: 多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。 2.教学重点:了解反证法的思考过程、特点3. 教学难点:反证法的思考过程、特点4教具准备:与教材内容相关的资料。5教学设想:利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况。 6教学过程:学生探究过程:综合法与分析法(1)、
2、反证法 反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。 反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(
3、小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。(2)、例子例1、求证:不是有理数例2、已知,求证:(且)例3、设,求证证明:假设,则有,从而 因为,所以,这与题设条件矛盾,所以,原不等式成立。例4、设二次函数,求证:中至少有一个不小于.证明:假设都小于,则 (1) 另一方面,由绝对值不等式的性质,有 (2)
4、(1)、(2)两式的结果矛盾,所以假设不成立,原来的结论正确。注意:诸如本例中的问题,当要证明几个代数式中,至少有一个满足某个不等式时,通常采用反证法进行。议一议:一般来说,利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况。试根据上述两例,讨论寻找矛盾的手段、方法有什么特点?例5、设0 < a, b, c < 1,求证:(1 - a)b, (1 - b)c, (1 - c)a,不可能同时大于 证:设(1 - a)b >, (1 - b)c >, (1 - c)a >,则三式相
5、乘:ab < (1 - a)b(1 - b)c(1 - c)a < 又0 < a, b, c < 1 同理:, 以上三式相乘: (1 - a)a(1 - b)b(1 - c)c 与矛盾原式成立例6、已知a + b + c > 0,ab + bc + ca > 0,abc > 0,求证:a, b, c > 0 证:设a < 0, abc > 0, bc < 0 又由a + b + c > 0, 则b + c = -a > 0 ab + bc + ca = a(b + c) + bc < 0 与题设矛盾 又:若a
6、= 0,则与abc > 0矛盾, 必有a > 0 同理可证:b > 0, c > 0巩固练习:第83页练习3、4、5、6课后作业:第84页 4、5、6教学反思:反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。 反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。归谬是反证法的关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陕西省汉中市十校2025-2026学年高二上学期期中联考语文试题含答案
- 2026年中国安防行业发展展望及投资策略报告
- 新能源汽车的营销策略分析-以智己为例
- 安徽省合肥市百花中学等四校联考2025-2026学年高一上学期11月期中考试生物试卷
- 广西名校联考2025-2026学年高三上学期11月考试政治试卷
- 四川省泸州市2025-2026学年高三上学期高考一模11月考试地理试卷
- 2025年苏州美术招聘真题及答案
- 复变函数形考试题及答案
- 2025年网络策划营销真题及答案
- 重庆山火应急预案建议(3篇)
- 直肠癌结肠造瘘护理查房
- 2025年官方个人采购协议格式
- GB/T 26189.2-2024工作场所照明第2部分:室外作业场所的安全保障照明要求
- 2025届中考生物复习课件 主题5 第5讲 人体生命活动的调节
- DB21T 3820-2023 示范型居家和社区养老服务中心建设规范
- 儿童共同抚养协议书范文
- DL5000-火力发电厂设计技术规程
- 基于网络流量分析的威胁检测研究
- 艾梅乙健康教育知识讲座
- 体质测试教案
- 15D501建筑物防雷设施安装图集
评论
0/150
提交评论