一次函数知识点及其典型例题_第1页
一次函数知识点及其典型例题_第2页
一次函数知识点及其典型例题_第3页
一次函数知识点及其典型例题_第4页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.一次函数基本概念1、变量: 在一个变化过程中可以取不同数值的量。常量: 在一个变化过程中只能取同一数值的量。例题:在匀速运动公式svt 中 , v 表示速度 , t 表示时间 , s 表示在时间 t 内所走的路程 ,则变量是 _,常量是 _ 。在圆的周长公式C=2 r 中,变量是_ ,常量是_.2、函数: 一般的,在一个变化过程中,如果有两个变量x 和 y,并且对于x 的每一个确定的值, y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量, y是 x 的函数。* 判断 Y 是否为 X 的函数,只要看 X 取值确定的时候, Y 是否有唯一确定的值与之对应例题:下列函数(

2、1) y= x (2)y=2x-1(3)y=1(4)y=2-1 -3x (5)y=x2-1中,是一x次函数的有()(A)4 个(B)3个(C)2 个(D)1 个3、函数的图像一般来说, 对于一个函数, 如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象4、函数解析式: 用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。5、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点) ;第三步:连线(按照横坐标由

3、小到大的顺序把所描出的各点用平滑曲线连接起来) 。6、函数的表示方法列表法:一目了然, 使用起来方便, 但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。图象法:形象直观,但只能近似地表达两个变量之间的函数关系。7、正比例函数及性质一般地,形如y=kx(k 是常数, k0)的函数叫做正比例函数,其中k 叫做比例系数 .注:正比例函数一般形式y=kx (k 不为零 ) k 不为零 x 指数为 1 b 取零当 k>0 时,直线 y=kx 经过三、 一象限, 从左

4、向右上升, 即随 x 的增大 y 也增大; 当 k<0时, ?直线 y=kx 经过二、四象限,从左向右下降,即随x 增大 y 反而减小(1) 解析式 : y=kx ( k 是常数, k 0)(2) 必过点 :( 0,0)、( 1,k)(3) 走向: k>0 时,图像经过一、三象限;k<0 时, ?图像经过二、四象限(4) 增减性 : k>0, y 随 x 的增大而增大; k<0, y 随 x 增大而减小(5) 倾斜度 : |k| 越大,越接近 y 轴; |k| 越小,越接近 x 轴例题 : .正比例函数y(3m5) x ,当 m时, y 随 x 的增大而增大 .;

5、.若 y x 23b 是正比例函数,则 b 的值是()A.02C.2D.3B.323.函数 y=( k-1)x, y 随 x 增大而减小,则k 的范围是 ( )A. k 0B. k1C. k1D. k1东方超市鲜鸡蛋每个0.4元,那么所付款y 元与买鲜鸡蛋个数 x(个)之间的函数关系式是_ 平行四边形相邻的两边长为x、 y,周长是 30,则 y 与 x 的函数关系式是 _ 8、一次函数及性质一般地,形如y=kx b(k,b 是常数, k0),那么 y 叫做 x 的一次函数 .当 b=0 时, y=kx b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式y=kx+b (

6、k 不为零 ) k 不为零 x 指数为 1 b 取任意实数一次函数 y=kx+b 的图象是经过( 0, b)和( - b , 0)两点的一条直线,我们称它为直k线 y=kx+b, 它可以看作由直线y=kx 平移 |b| 个单位长度得到 .(当 b>0 时,向上平移; 当 b<0时,向下平移)(1)解析式 :y=kx+b(k 、 b 是常数, k0)(2)必过点 :(0, b)和( -b , 0)k(3)走向: k>0 ,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限k 0 b 0k 0 b 0直线

7、经过第一、二、三象限直线经过第一、二、四象限k 0 b 0k 0 b 0直线经过第一、三、四象限直线经过第二、三、四象限(4)增减性 : k>0 , y 随 x 的增大而增大; k<0, y 随 x 增大而减小 .(5)倾斜度 :|k| 越大,图象越接近于 y 轴; |k| 越小,图象越接近于x 轴 .(6)图像的平移 : 当 b>0 时,将直线 y=kx 的图象向上平移b 个单位;当 b<0 时,将直线 y=kx 的图象向下平移b 个单位 .例题:若关于 x 的函数 y (n 1)xm 1 是一次函数,则 m=, n.函数 y=ax+b 与 y=bx+a 的图象在同一

8、坐标系内的大致位置正确的是()将直线 y 3x 向下平移5 个单位,得到直线;将直线y - x- 5 向上平移5 个单位,得到直线.若直线 yxa 和直线 yxb 的交点坐标为 ( m,8 ),则 ab_.;.已知函数y3x+1,当自变量增加m 时,相应的函数值增加() 3m+1 3m m 3m 19、一次函数y=kx b 的图象的画法.根据几何知识: 经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点: ( 0, b),.即横坐标或纵坐标为0 的点 .b>0b<0b=0经

9、过第一、二、三象限经过第一、三、四象限经过第一、三象限k>0图象从左到右上升,y 随 x 的增大而增大经过第一、二、四象限经过第二、三、四象限经过第二、四象限k<0图象从左到右下降,y 随 x 的增大而减小若 m 0, n 0, 则一次函数y=mx+n 的图象不经过()A. 第一象限B. 第二象限C.第三象限D.第四象限10、正比例函数与一次函数图象之间的关系一次函数 y=kx b 的图象是一条直线,它可以看作是由直线y=kx 平移 |b|个单位长度而得到(当b>0 时,向上平移;当b<0 时,向下平移).11、直线 y=k 1x+b1 与 y=k2x+b2 的位置关系

10、( 1)两直线平行: k1=k2 且 b1 b2( 2)两直线相交: k1 k2( 3)两直线重合: k1=k2 且 b1=b212、用待定系数法确定函数解析式的一般步骤:( 1)根据已知条件写出含有待定系数的函数关系式;( 2)将 x、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;( 3)解方程得出未知系数的值;( 4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.13、一元一次方程与一次函数的关系任何一元一次方程到可以转化为 ax+b=0( a,b 为常数, a 0)的形式,所以解一元一次方程可以转化为: 当某个一次函数的值为 0 时,求

11、相应的自变量的值 . 从图象上看, 相当;.于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值.14、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为 ax+b>0 或 ax+b<0( a,b 为常数, a 0)的形式,所以解一元一次不等式可以看作: 当一次函数值大 (小)于 0 时,求自变量的取值范围 . 15、一次函数与二元一次方程组( 1)以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=acx的图象相同 .bb( 2)二元一次方程组a1 x b1 y c1a1c1的解可以看作是两个一次函数y=x和a2 x b2 y c2b1b1y=a

12、2 xc2的图象交点 .b2b2题型一、点的坐标;.方法:x 轴上的点纵坐标为0, y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、 若点 A (m,n)在第二象限,则点(|m|,-n)在第 _象限;2、 若点 P( 2a-1,2-3b)是第二象限的点,则a,b 的范围为 _ ;3、 已知 A (4, b),B ( a,-2),若 A ,B 关于 x 轴对称,则a=_,b=_; 若 A,B关 于y轴 对 称 , 则a=_,b

13、=_; 若 若A , B关 于 原 点 对 称 , 则a=_,b=_ ;4、 若点 M( 1-x,1-y )在第二象限, 那么点 N( 1-x,y-1 )关于原点的对称点在第_象限。题型二、关于点的距离的问题方法:点到 x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;任意两点 A( xA , yA ), B(xB , yB ) 的距离为(xAxB )2( yA yB )2 ;若 AB x 轴,则 A( xA ,0), B(xB ,0) 的距离为xAxB;若 AB y 轴,则 A(0, yA ), B(0, yB ) 的距离为yAyB ;点 A( xA , yA ) 到原

14、点之间的距离为xA2yA21、 点 B( 2,-2)到 x 轴的距离是 _ ;到 y 轴的距离是 _ ;2、 点 C( 0, -5)到 x 轴的距离是 _;到 y 轴的距离是 _;到原点的距离是 _;3、 点 D( a,b)到 x 轴的距离是 _ ;到 y 轴的距离是 _;到原点的距离是_ ;4、 已 知 点 P ( 3,0 ), Q(-2,0), 则PQ=_, 已 知 点 M 0, 1,N 0,1, 则22MQ=_; E 2, 1 , F 2,8 ,则 EF 两点之间的距离是 _;已知点 G( 2,-3)、 H ( 3,4),则 G、 H 两点之间的距离是 _;5、 两点( 3, -4)、(

15、 5, a)间的距离是2,则 a 的值为 _ ;6、 已知点 A ( 0,2)、 B ( -3, -2)、 C( a,b),若 C 点在 x 轴上,且 ACB=90 °,则 C 点坐标为 _.题型三、一次函数与正比例函数的识别方法:若 y=kx+b(k,b是常数, k 0),那么 y 叫做 x 的一次函数,特别的,当b=0 时,一次函数就成为y=kx(k 是常数, k 0),这时, y 叫做 x 的正比例函数,当k=0 时,一次函数就成为若y=b,这时, y 叫做常函数。 A 与 B 成正比例A=kB(k 0)1、当 k_ 时, yk3 x22x3 是一次函数;2、当 m_ 时,3、

16、当 m_ 时,ym3x2m 14x5 是一次函数;ym4x2m 14x5是一次函数;;.4、 2y-3 与 3x+1 成正比例,且x=2,y=12, 则函数解析式为_ ;题型四、函数图像及其性质方法:性质函数图象经过象限变化规律b 0k 0b=0b 0y=kx+b( k、 b 为常数,且 k 0)b 0k 0b=0b 0一次函数 y=kx+b (k0)中 k、 b 的意义:k( 称为斜率 ) 表示直线 y=kx+b (k0)的倾斜程度;b(称为截距)表示直线y=kx+b (k0)与 y 轴交点的,也表示直线在 y轴上的。同一平面内,不重合的两直线y=k x+b (k 0)与 y=k2x+b(

17、k0)的位置关系:11122当时,两直线平行。当时,两直线垂直。当时,两直线相交。当时,两直线交于 y 轴上同一点。特殊直线方程:X 轴 :直线Y轴 :直线与 X 轴平行的直线与 Y 轴平行的直线一、三象限角平分线二、四象限角平分线;.1、对于函数y 5x+6, y 的值随 x 值的减小而 _。2、对于函数 y12 x ,y 的值随 x 值的 _而增大。233、一次函数 y=(6-3m)x (2n 4) 不经过第三象限,则m、 n 的范围是 _ 。4、直线 y=(6-3m)x (2n 4) 不经过第三象限,则 m、 n 的范围是 _。5、已知直线 y=kx+b 经过第一、二、四象限,那么直线y

18、=-bx+k 经过第 _象限。6、无论 m 为何值,直线y=x+2m 与直线 y=-x+4 的交点不可能在第_象限。7、已知一次函数( 1)当 m 取何值时, y 随 x 的增大而减小?( 2)当 m 取何值时,函数的图象过原点?题型五、待定系数法求解析式方法:依据两个独立的条件确定k,b 的值,即可求解出一次函数y=kx+b ( k0)的解析式。已知是直线或一次函数可以设y=kx+b ( k 0);若点在直线上,则可以将点的坐标代入解析式构建方程。1、若函数y=3x+b 经过点( 2,-6 ),求函数的解析式。2、直线 y=kx+b 的图像经过A(3, 4)和点 B( 2, 7),3、如图

19、1 表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系求油箱里所剩油 y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x 的取值范围。4、一次函数的图像与y=2x-5 平行且与x 轴交于点( -2,0)求解析式。5、若一次函数y=kx+b 的自变量x 的取值范围是 -2 x 6,相应的函数值的范围是-11 y9,求此函数的解析式。;.6、已知直线y=kx+b 与直线 y= -3x +7 关于 y 轴对称,求k、b 的值。7、已知直线y=kx+b 与直线 y= -3x +7 关于 x 轴对称,求k、b 的值。8、已知直线y=kx+b 与直线 y= -3x +7 关于原点

20、对称,求k、b 的值。题型六、平移方法:直线y=kx+b 与 y 轴交点为( 0, b),直线平移则直线上的点(0, b)也会同样的平移,平移不改变斜率k,则将平移后的点代入解析式求出b 即可。直线 y=kx+b 向左平移2 向上平移3 <=> y=k(x+2)+b+3; (“左加右减,上加下减”)。1. 直线 y=5x-3 向左平移2 个单位得到直线。2. 直线 y=-x-2 向右平移 2 个单位得到直线13.直线 y=x 向右平移2 个单位得到直线24.直线 y=3 x 2 向左平移 2 个单位得到直线25. 直线 y=2x+1 向上平移 4 个单位得到直线6. 直线 y=-3

21、x+5 向下平移 6 个单位得到直线7. 直线 y1 x 向上平移 1 个单位,再向右平移 1 个单位得到直线。338. 直线 yx1 向下平移 2 个单位,再向左平移1 个单位得到直线_。49. 过点( 2, -3)且平行于直线 y=2x 的直线是 _ _。10. 过点( 2, -3)且平行于直线 y=-3x+1 的直线是 _.11把函数 y=3x+1 的图像向右平移2 个单位再向上平移3 个单位,可得到的图像表示的函数是 _ ;12直线 m:y=2x+2 是直线 n 向右平移2 个单位再向下平移5 个单位得到的,而(2a,7)在直线 n 上,则 a=_ ;题型七、交点问题及直线围成的面积问题方法:两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解;复杂图形“外补内割”即:往外补成规则图形,或

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论