




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、11.2 三角形全等的判定三角形全等的判定(三三) 三边对应相等的两个三角形全等(可以简写三边对应相等的两个三角形全等(可以简写为为“边边边边边边”或或“SSS”)。)。ABCDEF在在ABC和和 DEF中中 ABC DEF(SSS)AB=DEBC=EFCA=FD知识梳理知识梳理: :在在ABC与与DEF中中ABC DEF(SAS) 两边和它们的夹角对应相等的两个三角形全两边和它们的夹角对应相等的两个三角形全等。等。(可以简写成可以简写成“边角边边角边”或或知识梳理知识梳理: :FEDCBAAC=DFC=FBC=EF知识梳理知识梳理: :DCBAABDABC1.若若AB=AC,则添加,则添加一
2、个一个什么条件可得什么条件可得ABD ACD?ABD ACDAB=ACABDCBAD= CADSA SAD=ADBD=CDS2.如图,要证如图,要证ACB ADB ,至少选,至少选用哪些条件可用哪些条件可ABCDACB ADBSAS证得证得ACB ADBAB=AB CAB= DAB AC=ADSBC=BD?继续探讨三角形全等的条件:继续探讨三角形全等的条件: 两角一边两角一边思考:已知一个三角形的两个角和一条边,那么两个角思考:已知一个三角形的两个角和一条边,那么两个角与这条边的位置上有几种可能性呢?与这条边的位置上有几种可能性呢?ABCABC图图1图图2在图在图1中,中, 边边AB是是AA与
3、与B的夹边,的夹边,在图在图2中,中, 边边BC是是A A的对的对边,边, 我们称这种位置关系我们称这种位置关系为为两角夹边两角夹边 我们称这种位置关系为我们称这种位置关系为两角及其中一角的对边。两角及其中一角的对边。 观察下图中的观察下图中的ABC,画一个画一个A B C ,使,使A B =AB , A = A, B = B结论结论: :两角及夹边对应相等的两角及夹边对应相等的两个三角形全等两个三角形全等(ASA).(ASA).观察:观察:A B C 与与 ABC 全等吗?怎么验证?全等吗?怎么验证?画法画法: 1.画画 A B =AB;2.在在A B 的同旁画的同旁画DA B = A ,E
4、B A = B, A D、B E交于点交于点CACBAEDCB思考思考:这两个三角形全等是满足哪三个条件?:这两个三角形全等是满足哪三个条件?如何用符号语言来表达呢如何用符号语言来表达呢? ?证明证明:在在ABC与与A B C 中中A=A AB=A BABC ABC(ASA)ACBACB B=B两角及夹边对应相等的两角及夹边对应相等的两个三角形全等两个三角形全等(ASA).(ASA).在在ABC和和DEF中,中, A=D, B=E,BC=EF, ABC和和DEF全等吗?为什么?全等吗?为什么?ACBEDF探索探索分析:分析:能否转化为能否转化为ASA?证明:证明: A=D, B=E(已知已知)
5、 C=F(三角形内角和定理三角形内角和定理) B=E 在在ABC和和DEF中中BC=EF C=FABC DEF(ASA)你能从上题中得到什么结论?你能从上题中得到什么结论?两角及一角的对边对应相等的两角及一角的对边对应相等的两个三角形全等(两个三角形全等(AASAAS)。)。如何用符号语言来表达呢如何用符号语言来表达呢? ?证明证明:在在ABC与与A B C 中中A=AABC ABC(AAS)ACBACB B=BBC=B C (ASA)(AAS)归纳归纳下列条件能否判定下列条件能否判定ABC DEF.(1)A=E AB=EF B=D(2)A=D AB=DE B=E试一试试一试请先画图试试看请先
6、画图试试看如图如图, ,小明不慎将一块三角形模具打碎为两块小明不慎将一块三角形模具打碎为两块, ,他是否可他是否可以只带其中的一块碎片到商店去以只带其中的一块碎片到商店去, ,就能配一块与原来一就能配一块与原来一样的三角形模具吗样的三角形模具吗? ? 如果可以如果可以, ,带哪块去合适带哪块去合适? ?你能说明其中理由吗你能说明其中理由吗? ?怎么办?可以帮帮怎么办?可以帮帮我吗?我吗?ABCBEAD1、如图,已知、如图,已知AB=DE, A =D, ,B=E,则,则ABC DEF的理由是:的理由是:2、如图,已知、如图,已知AB=DE ,A=D,,C=F,则,则ABC DEF的理由是:的理由
7、是:ABCDEF例例1 1 、如图、如图 ,AB=AC,B=C,AB=AC,B=C,那么那么ABEABE和和ACDACD全等全等吗?为什么?吗?为什么?证明证明: 在在ABE与与ACD中中 B=C (已知)(已知) AB=AC (已知)(已知) A= A (公共角)(公共角) ABE ACD (ASA) AEDCB1.如图,如图,AD=AE,B=C,那么,那么BE和和CD相等相等么?为什么?么?为什么?证明证明: :在在ABEABE与与ACDACD中中 B=C B=C (已知)(已知) A= A A= A (公共角)(公共角) AE=AD AE=AD (已知)(已知) ABE ABE ACDA
8、CD(AASAAS) BE=CD BE=CD (全等三角形对应边相等(全等三角形对应边相等)AEDCBBE=CDBE=CD你还能得出其他你还能得出其他什么结论?什么结论?O 例例2. 如图如图,O是是AB的中点,的中点, = , 与与 全等吗全等吗? 为什么?为什么?ABAOCBODOABCD两角和夹两角和夹边对应相边对应相等等ABCDO1234 如图:已知如图:已知ABC=DCBABC=DCB,3=43=4,求证求证: (1)ABCDCB。(2)1=21=2例例3 3练习练习1 已知:如图,已知:如图,AB=A C ,A=A,B=C 求证:求证:ABE A CD _ ( )_ ( )_ (
9、) 证明:在证明:在 和和 中中_ _( ) CDAABEA=A 已知已知AB=AC 已知已知B=C 已知已知ABE ACD ASA ABE ACD1、如图:已知、如图:已知ABDE,ACDF,BE=CF。求证:。求证:ABC DEF。ABCDEF考考你考考你证明:证明: BE=CF(已知已知) BC=EF(等式性质等式性质) B=E 在在ABC和和DEF中中BC=EF C=FABC DEF(ASA) ABDE ACDF (已知已知) B=DEF , ACB=F判定三角形全等判定三角形全等你有哪些方法?你有哪些方法?你能吗你能吗?AB=DE可以吗?可以吗?ABDEA=D (已知(已知 ) AB=DE(已知(已知 )B=E(已知(已知 )在在ABC和和DEF中中 ABC DEF(ASA)FEDCBA知识梳理知识梳理:知识梳理知识梳理: : :在在ABC和和DFE中中,当当A=D , C=F和和AB=DE时时,能否得到能否得到 ABC DFE?(1) (1) 两角和它们的夹边对应相等的两个三角形全等两角和它们的夹边对应相等的两个三角形全等. . 简写成简写成“角边角角边角”或或“ASAASA”.”.(2) (2) 两角和其中一角的对边对应相等的两个三角形全等两角和其中一角的对边对应相等的两个三角形全等. .简写成简写成“角角边角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 就业协议书失效
- 2025企业实习生合同
- 2025餐饮服务承包合同范本
- 2025农村房屋买卖合同协议
- 2025铝材购销合同范本
- 2025光伏板安装施工合同样本
- 外线维护施工方案
- 扬尘措施施工方案
- 法院书记员招聘2023年笔试考试难点解析
- 公证处委托书的法律意义3篇
- 2025年装维智企工程师(三级)复习模拟100题及答案
- 国家管网集团西南管道昆明输油气分公司突发环境事件综合应急预案
- 停送电培训课件
- 医院培训课件:《核心制度-护理值班和交接班制度》
- 解题秘籍05 圆的综合问题(9种题型汇-总+专题训练)(解析版)-2025年中考数学重难点突破
- 美学《形象设计》课件
- 江苏省建筑与装饰工程计价定额(2014)电子表格版
- 2022年续聘申请书
- 单片机病房呼叫系统设计
- 交通信号系统红绿灯安装专项施工方案
- DB14∕T 2024-2020 出口水果包装厂管理规范
评论
0/150
提交评论