2017年有理数培优题_第1页
2017年有理数培优题_第2页
2017年有理数培优题_第3页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、有理数培优题基础训练题一、填空:1在数轴上表示一2的点到原点的距离等于()。2、若 I a I = a,则 a () 0.3、任何有理数的绝对值都是()。4、如果a+b=O,那么a、b 一定是()。5、将0.1毫米的厚度的纸对折20次,列式表示厚度是()。6、已知 |a| 3,|b| 2,|a b| a b,则 a b ()7、|x 21 |x 3|的最小值是()。8在数轴上,点A B分别表示 1,贝U线段AB的中点所表示的数是()。4 2a b 20109、 若a,b互为相反数,m, n互为倒数,P的绝对值为3,贝U mn p2()。P10、若abcM0,则 旦 単 也 的值是().a b

2、c11、 下列有规律排列的一列数:1、3、2、5、3、,其中从左到右第100个数是(八43 85二、解答问题:1、已知x+3=0,|y+5|+4的值是4, z对应的点到-2对应的点的距离是7,求x、y、z这三个 数两两之积的和。3、若2x |4 5x| |1 3x| 4的值恒为常数,求x满足的条件及此时常数的值4、若 a,b,c 为整数,且 |a b |2010 |c a|2010 1,试求 |c a | |a b| |b c| 的值+5 -丄+9 11 + 1315 , 171612203042567215、计算:一26、应用拓展:将七只杯子放在桌上,使三只口朝上,四只口朝下。现要求每次翻转

3、其中任意四只,使它们杯口朝向相反,问能否经有限次翻转后,让所有杯子杯口朝下?能力培训题知识点一:数轴例1:已知有理数a在数轴上原点的右方,有理数b在原点的左方,那么()A. ab b B . ab b C . a b 0 D . a b 0拓广训练:1如图a, b为数轴上的两点表示的有理数,在a b,b 2a,|a日,旧 忖中,负数的个数有()“祖冲之杯”邀请赛试题)A. 1 B . 2 C . 3 D . 43、把满足2 a 5中的整数a表示在数轴上,并用不等号连接。2、利用数轴能直观地解释相反数;例2 :如果数轴上点 A到原点的距离为 3,点B到原点的距离为5,那么A、B两点的距离为 。拓

4、广训练:1、在数轴上表示数 a的点到原点的距离为 3,则a 3.2、 已知数轴上有 A B两点,A B之间的距离为1,点A与原点0的距离为3,那么所有满足条件的点B与原点0的距离之和等于 。(北京市“迎春杯”竞赛题)3、禾U用数轴比较有理数的大小;例3:已知a 0,b 0且a b 0 ,那么有理数a,b, a, b的大小关系是 。(用“ ”号连接)(北京市“迎春杯”竞赛题)拓广训练:1、若m 0,n 0且m n,比较 m, n, m n, m n,n m的大小,并用“”号连接。例4:已知a 5比较a与4的大小拓广训练:1、已知a3,试讨论a与3的大小2、已知两数a, b,如果a比b大,试判断

5、a与b 的大小4、利用数轴解决与绝对值相关的问题。例5:有理数a,b,c在数轴上的位置如图所示,式子化简结果为(A. 2a 3b c B . 3b c C . b c D .b -1 a 0拓广训练:1、有理数a,b,c在数轴上的位置如图所示,贝U化简aa c 1 c的结果为2、已知a ba b 2b,在数轴上给出关于 a,b的四种情况如)图所示,1则成立的是3、已知有理数sbb,c在数轴上的对应0勺位置如下图:贝y0c a |abc(湖北省初中数学竞赛选拨赛试题)a b化简后的结果是(A. b 1 B . 2a b 1 C . 1 2a b 2c D . 122 b c 0三、培优训练2 2

6、1已知是有理数,且 x 1 2y 10,那以x y的值是()1 31 亠 33A._ B . C 或D .1或2 22222、( 07乐山)如图,数轴上一动点 A向左移动2个单位长度到达点 B,再向右移动5个单位长度到达点 C .若 5.点C表示的数为1,则点A表示的数为()BFa :CA. 7B. 3c. 3D. 2013、如图,数轴上标出若干个点,每相邻两点相距1个单位,点A、B、C D对应的数分别是整数 a,b,c,d一.d且d 2a 10,那么数轴的原点应是()AB C 产DA. A 点 B . B 点 C . C 点 D .D点4、数a,b,c,d所对应的点A, B, C, D在数轴

7、上的位置如图所示,那么a c与b d的大小关系是()AD0CBAA. a c b d B . a c b d C.ac bdD.不确定的5、不相等的有理数a, b, c在数轴上对应点分别为A, B,c,若abb ca c,那么点B ()A.在A、C点右边 B .在A、C点左边 C.在Ac点之间D.以上均有可能6、设y x 1 x 1 ,则下面四个结论中正确的是()(全国初中数学联赛题)A. y没有最小值B.只一个x使y取最小值C.有限个x (不止一个)使 y取最小值 D .有无穷多个x使y取最小值1 17、在数轴上,点 A B分别表示 丄和丄,则线段AB的中点所表示的数是3 58、若a 0,b

8、0 ,则使x a x b a b成立的x的取值范围是 .9、x是有理数,则x 100| x謝的最小值是 d b O a c且6a10、已知a,b, c,d为有理数,在数轴上的位置如图所示:6b 3c 4d 6,求 3a 2d 3b 2a |2b © 的值。11、(南京市中考题)(1)阅读下面材料:点A、B在数轴上分别表示实数 a,b, A、B两点这间的距离表示为 AB,当A B两点中有一点在原点时,O (A)不妨设点A在原点,如图1, ABOB;当A、B两点都不在原点时,如图占八、A、B都在原点的右边ABOBOA如图占八、A、B都在原点的左边ABOBOA如图占八、A、B在原点的两边

9、AB OA OB a b(2)回答下列问题: 数轴上表示2和5两点之间的距离是 ,数轴上表示-2和-5的两点之间的距离是 ,数轴上表示1和-3的两点之间的距离是 ; 数轴上表示 x和-1的两点A和B之间的距离是 ,如果 AB 2,那么x为 当代数式x 1 x 2取最小值时,相应的 x的取值范围是 求x 1 x 2 x 3x 1997的最小值。聚焦绝对值一、阅读与思考绝对值是初中代数中的一个重要概念,引入绝对值概念之后,对有理数、相反数以及后续要学习的算术根 可以有进一步的理解;绝对值又是初中代数中一个基本概念,在求代数式的值、代数式的化简、解方程与 解不等式时,常常遇到含有绝对值符号的问题,理

10、解、掌握绝对值概念应注意以下几个方面:1、脱去绝值符号是解绝对值问题的切入点。脱去绝对值符号常用到相关法则、分类讨论、数形结合等知识方法。去绝对值符号法则:aa0a0a0aa02、恰当地运用绝对值的几何意义从数轴上看a表示数a的点到原点的距离;a b表示数a、数b的两点间的距离。3、灵活运用绝对值的基本性质 a 0 a2 a2 a2 a b a| |b|二、知识点反馈1、去绝对值符号法则 ab a b |a b ia ib例 1:已知 |a|5,|3且|a bb a那么a b拓广训练:1、已知 I a1,b|2,|C 3,且 ac,那么 a b(北京市“迎春杯”竞赛题)2、若a 8, b 5,

11、且a b 0,那么a b的值是()A. 3 或 13 B . 13 或-13 C . 3 或-3 D . -3 或-132、恰当地运用绝对值的几何意义X 1的最小值是(A. 2 B . 0 C .-1解法1、分类讨论2x 2;X 1时,1 X 1 时,2x比较可知,1的最小值是2,故选A。解法2、由绝对值的几何意义知 X 1表示数X所对应的点与数1所对应的点之间的距离;X 1表示数X所对应的点与数-1所对应的点之间的距离;X 1 X 1的最小值是指X点到1与-1两点距离和的最小值。如图易知 :X -1 X 1 X 当1 X 1时,X 1 X 1的值最小,最小值是 2故选A。拓广训练:X 2的最

12、大值为b,求a b的值。-2 a -10 b 11、已知X 3 X 2的最小值是a , X 3三、培优训练1、如图,有理数a,b在数轴上的位置如图所示:则在a b,b 2a, b a, a b, a 2, b 4中,负数共有()(湖北省荆州市竞赛题)A . 3个B . 1个C . 4个D . 2个2、若m是有理数,则 m m 定是()A.零B .非负数 C .正数D .负数3、如果x 2 X 20,那么x的取值范围是()A . X 2 B . X 2 C . X 2 D . X 24、 a,b是有理数,如果a b a b,那么对于结论(1) a一定不是负数;(2) b可能是负数,其中()(第1

13、5届江苏省竞赛题)A.只有(1)正确 B .只有(2)正确 C . (1) (2)都正确 D . (1) (2)都不正确5、 已知|a|a,则化简|a 1| |a 2所得的结果为()A .1 B . 1 C . 2a 3 D . 3 2a6、已知0 a 4,那么a 分别求出|x 2和|x4的零点值;(2)化简代数式|x2|x4 14、( 1)当x取何值时,jx 3有最小值?这个最小值是多少?(2)当x取何值时,5 |x 2有最大值?这个最大值是多少? ( 3 )求lx 4 x 51的最小值。(4)求|x 7 x 8 |X 9的最小值。3a的最大值等于()A. 1 B . 5 C . 8D .

14、97、已知a,b,c都不等于零,且xab ci,根据a,b,c的不同取值,x有()ab) (abcA.唯一确定的值B . 3种不同的值 C . 4种不同的值 D . 8种不同的值8、满足a b a b成立的条件是()(湖北省黄冈市竞赛题)A. ab 0 B . ab 1 C . ab 0 D . ab 1x 5 x 2 I xl9、 若2 x 5,则代数式口的值为。x 5 2 xx卄a| b labl10、 若ab 0,则的值等于。a b ab11、 已知a, b,c是非零有理数,且 a b c 0, abc 0,求a 吕-abc的值。|a| |b| 忖 |abc|12、已知 a, b, c,

15、 d 是有理数,a b 9, cd 16,且 a b c d 25,求 b a d c 的值。13、阅读下列材料并解决有关问题:xx 0我们知道x 0 x 0,现在我们可以用这一个结论来化简含有绝对值的代数式,如化简代数式xx 0x 1 x 2时,可令x 10和x 20,分别求得x 1,x2 (称1,2分别为x 1与x 2的零点值)。在有理数范围内,零点值 x 1和x 2可将全体有理数分成不重复且不遗漏的如下3种情况:(1)当 x 1 时,原式=x 1 x 2 2x 1;(2)当 1 x 2 时,原式=x 1 x 23;(3)当 x 2 时,原式=x 1 x 2 2x 1 o2x 1x1综上讨

16、论,原式=31 x 22x 1x 2通过以上阅读,请你解决以下问题:15、某公共汽车运营线路 AB段上有A D、C、B四个汽车站,如图,现在要在 AB段上修建一个加油站 M, 为了使加油站选址合理,要求 A,B, C, D四个汽车站到加油站 M的路程总和最小,试分析加油站 M在何处选址最好?16、先阅读下面的材料,然后解答问题:在一条直线上有依次排列的n n 1台机床在工作,我们要设置一个零件供应站P,使这n台机床到供应站P的距离总和最小,要解决这个问题,先“退”至吐匕较简单的情形:A1A2Al A2( P) DA3甲P乙甲乙丙如图,如果直线上有 2台机床(甲、乙)时,很明显P设在A1和A2之

17、间的任何地方都行,因为甲和乙分 别到P的距离之和等于 A1到A2的距离.如图,如果直线上有3台机床(甲、乙、丙)时,不难判断,P设在中间一台机床 A2处最合适,因为如果P放在A2处,甲和丙分别到 P的距离之和恰好为 A1到A3的距离;而如果 P放在别处,例如 D处,那么甲 和丙分别到P的距离之和仍是 A到A3的距离,可是乙还得走从 A2到D近段距离,这是多出来的,因此P放在A2处是最佳选择。不难知道,如果直线上有4台机床,P应设在第2台与第3台之间的任何地方;有 5台机床,P应设在第3台位置。问题(1 ):有n机床时,P应设在何处?问题(2)根据问题(1)的结论,求x 1 x 2 x 3x 6

18、17的最小值。有理数的运算、阅读与思考在小学里我们已学会根据四则运算法则对整数和分数进行计算,当引进负数概念后,数集扩大到了有 理数范围,我们又学习了有理数的计算,有理数的计算与算术数的计算有很大的不同:首先,有理数计算 每一步要确定符号;其次,代数与算术不同的是“字母代数”,所以有理数的计算很多是字母运算,也就是通常说的符号演算。数学竞赛中的计算通常与推理相结合,这不但要求我们能正确地算出结果,而且要善于观察问题的结构特 点,将推理与计算相结合, 灵活选用算法和技巧, 提高计算的速成度,有理数的计算常用的技巧与方法有:1、利用运算律;2、以符代数;3、裂项相消;4、分解相约;5、巧用公式等。

19、、知识点反馈1、利用运算律:加法运算律加法交换律abba加法结合律a b c a b乘法运算律c乘法交换律a b b a乘法结合律a b c a b c乘法分配律a b c ab ac解:原式=4.62.7537-4.62.75 34.65.751.15拓广训练:1、计算(1)0.60.08例2:计算:9 242550解:原式=102550拓广训练:1、计算:2、裂项相消(1)(4)2711100.92501150500315911498ab计算解:原式=25n 1 ;(3)20092010200920106 112 21201033 42009201020092010拓广训练:2007 20

20、091、计算:-1例4:计算:3、以符代数27173917273973412437761716,27 26,111027271717393912387137“34“24“768 -5 -,则172711162610172739271739271739717解:分析:令 A=1327 5磴8乂113713咚原式=2A A 2拓广训练:1、计算:-20062005200620054、分解相约例5:计算:n 2n24n解:原式=1 3 9 2 6 18213 964729三、培优训练1、a是最大的负整数,2、计算:(1)3(2)0.25n 3n 9nb是绝对值最小的有理数,则3 912a2007,2

21、009b20081997 19991321898a299b21997ab4、计算:1131351397=2446669898985、计算:22223242526 2728 29210 =。3、若a与b互为相反数,则7、(“五羊杯”)计算:3.1431.46280.68668.66.86=(A.3140 B .628C.1000 D.120012 :341415 “8、(“希望杯”)等于()246828301 m111A.B .-CD44225642 5329、(“五羊杯”)计算:=()298 14.54人 5r102040A.B .C .D23996、 竺,97, 鰹,98这四个数由小到大的排

22、列顺序是 199898199999)22 23 242009(r2 ,因此20092S-S= 221,所以122320082009/2= 21仿照以上推理计算出1525352009的值是(A 520091520101c、2009514D 52010 1411、a1 ,a2,a3,a2oo4都如果Ma1a2a 2003 a2a3a2004,Na1a2a2004a2a3a2003,那么M,N的大小关系是A. MNN D 不确定12、设三个互不相等的有理数,既可表示为1,a b,a的形式,又可表示为 0, ,b的形式,求a1999,2000a b的值(“希望杯”邀请赛试题)13、计算(1) 5.7

23、0.000360.190.00657000.000000164(2009年第二十届“五羊杯”竞赛题)4(2) 0.2523134136.5132(北京市“迎春杯”竞赛题)14、已知m,n互为相反数,a,b互为负倒数,x的绝对值等于求 x31 m n ab x2m n x2001ab 2003的值15、已知 |ab 2 a 210,求丄ab的值a 2006 b 2006(香港竞赛)16、( 2007,无锡中考)图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层将图1倒置后与原图1拼成图2的形状,这样我们可以算出图中所有圆圈的个数为1

24、2 3 L n 吃U2第1层 第2层 ;如果图第n层9?5O中的圆圈共有12层,1,2,3,4 ,L,则最底层最左边这个圆圈中的数是图4的方式填上一串连续的整数 23, 22 ,2 -图,【专题精讲】【例1】计算下列各题3)3 0.7540.52(4)3412(0.125)12 (【例2】计算:112)72 3(8)1325 (厲37253 9V6 7 8 9图3电圈中都按图.3的方式填上一串连续的正整数; (2)我们自上往下,在每个圆圈中都按21, L,求图4中所有圆圈中各数的绝对值之和.#33333(4) 4 ( 410 11 12 L 2005 2006 2007 2008反思说明:一般

25、地,多个分数相加减,如果分子相同,分母是两个整数的积,且每个分母中因数差相同,1 1【例3】计算:丄丄2 612203019900丄1 313 515 7L99 101可以用裂项相消法求值。1n(n 1)1n(n k)1n(n 1)( n 2)1(n 1)(n 1)【例4】(第18届迎春杯)计算:11 1 L124 81024【例5】1 J 2、1计算:一()(-23) (12 3 42334445555【例6】(第8届“希望杯”)计算:(n(606060585960 60(1 1 1 L )(1232009 21l(11120092010)(2例 7】请你从下表归纳出1323 3343 Ln

26、3的公式并计算出:13233343 L503的值。1、用简便方法计算:999 998998999 998 9999999982、(第10届“希望杯”训练题)1 1111( 1)(1) L( 1)(1) ( 1)20042003100210011000【实战演练】123452468103691215481216205101520253、已知 a 1999 1999 19991998 1998 19982000 2000 20001999 1999 1999,C躺脇则abc -4、计算:1 111 13 15 13 15 17129 31 335、(“聪明杯”试题)(12 4 2 4 8 L3 9

27、 2 6 18 Ln 2n 4门)2n 3n 9n16、(1 二)(1)(1(111998 2000)(111999 2001)的值得整数部分为(提示:(n 1)2 n2 2n 1125 7167 94019 218、计算:S 12 2223 L20109、计算1 丄 一1的值10010、计算:-1(13)(1 1)4L(1 】)(1 】)(1 1)234参考答案1 1(1 2)(1 3)L2010的值。(1)2010基础训练题、填空。1、2;2、w;3、非负数;4、互为相反数;5、0.1 220 毫米;6、5 或 1;7、5;8、9、一 8;10、土 3,± 1;11、101 。2

28、00二、解答题。1、一 25 或 87;3、当1 x 4时,常数值为7;356、不可能,因为每次翻转其中任意194个,无论如何翻转,杯口朝上的个数4、2;5、都是奇数个,所以不可能让杯口朝上的杯子个数为偶数零,故不可能。能力培训题知识点一:数轴例1、D拓广训练:1、B;3、因为 2 a 5, 5 a 2,所以 543 3 4 5例2、8或2拓广训练:1、0或6;2、12例 3、b a a |b拓广训练:1、题目有误。例4、解:当4 a 5时,|a| 4 ;当4 a 4时,忖4 ;当a 4时,口 4.拓广训练:略例5、C拓广训练:1、一 2;2、三、培优训练1、C 2、D 3、B 4、A17、:8、 b x a:9、1510、 5;11、3, 3, 4; x3、D5、C6、D1952211 , 1 或3; 1 x 2 : 997002聚焦绝对值例 1、一 2 或一8.拓广训练:1、4或0;2、A例2、A拓广训练:1、通过零点值讨论得 a=5,b=5;所以a+b=10.三、培优训练1、 A; 2、 B;3 、 D;4、A; 5、A; 6、B;7、B;8、C9、1;10、1 或3;11、0;12、一 7;13、零点值分别为一2,4.略。(分三种情况讨论)14、3;、-2 ;、1;、215、加油站应建在 D,C两汽站之间(包

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论