平方差公式和完全平方公式基础拔高练习含答案_第1页
平方差公式和完全平方公式基础拔高练习含答案_第2页
平方差公式和完全平方公式基础拔高练习含答案_第3页
平方差公式和完全平方公式基础拔高练习含答案_第4页
平方差公式和完全平方公式基础拔高练习含答案_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、平方差公式基础训练1. (a2+b2)(a2b2)=()2(一)22. (-2x2-3yD(2x2-3y2)=(一)2一(一)23. 20X19=(20+)(204. 9.3X10.7=(5. 200622005X2007的计算结果为()A.1B.1C.2D.2226. 在下列各式中,运算结果是h16a的杲()A.(一4a+b)(一4a-b)B.(一4a+b)(4a-b)(10) (x+2y) (x 2y) ( 2x+5y) (2x- 5y)C.(b+2a)(b'8a)7,运用平方差公式计算.(1)102X98D.(一4a一b)(4a-b)312;x34一2.7X3.3(4)1007X

2、993(5)12-X113(6)19-X20AA7. )(3a+2b)(3a-2b)b(ab) (a+b) (a- b) + (a+2b) (a- 2b)8. )(a1)(a.-2)(a+1)(a+2)(11) (2m-5)(5+2m+(4m-3)(4m-3)(12) (a+b)(ab)(a3b)(a+3b)+(_2a+3b)(_2a-3b)综合应用8 .(3a+b)()=b-9a;(a+bm)()=b"(am);19 .先化简,再求值:(3a+l)(3a1)(2a3)(3a+2),其中a=310 .运用平方差公式计算:(2)99X101X10001.200-005511 .解方程:

3、2(1) 2(x+3)(x-3)=x+(x-1)(x+1)+2x(2) (2x1)(2x+l)+3(x+2)(x2)=(7x1)(x+1)12 .计算:(4x3y-2a+b)2一(4x+3y+2a-b)拓展提升13 .若a+b=4,a (5x - 2)b2=12,求a,b的值.完全平方公式基础训练1 .完全平方公式:(a+b),(a一 b) 2即两数的的平方等于它们的2 .计算:,加上(或减去)了+23.(2x一 3y)2=()-2)2=a-+12ab+36t);()"4a 12ab+9t).4.5.nf 一 8m+6.下列计算正确的是()A . (a一 b) 2=a2 - b2c

4、/2 八 24 2r (_ 1 _ 。一. (a+2b) 2=a2+2ab+4t7.运算结果为1 - 2ab%2b4的是()2 2 2 2A . (1+ab) B . (1+a.b)/, 2、2、一1 I J Q 笆,2 一2 的土里头2 2Rv +1 Aw R4y +1 Aw24y1Ryv2Ry 1 6yv(3x+A)2=9x212X+B,贝UA=,B=9.计算(a+1)(-a1)的结果是(.2a1A.a"2a一1B.aJ-110.运用完全平方公式计算:(a+3) 2(3)(l+3a)1 1 2(4) ( -a+-b)352(5) ( 一 a- b)12(6)(一a+-)2(7)(xy+4)(8)(a+1)(9)(一2m-n2)2(10)1012(11)1982(12)19.9211.计算:(1)(a+2b)(a.12b)(a+b)2(X-2)12 .解不等式:(2x5)(3x+l)2>13(X210)+2.综合应用13 .若(a+b)2+M=(ab);贝uM=14 .已知(ab)2=8,ab=l,贝a2+b2=15 .已知x+y=5,xy=3,求(xy

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论