2013年中考数学复习___锐角三角函数和解直角三角形课件_第1页
2013年中考数学复习___锐角三角函数和解直角三角形课件_第2页
2013年中考数学复习___锐角三角函数和解直角三角形课件_第3页
2013年中考数学复习___锐角三角函数和解直角三角形课件_第4页
2013年中考数学复习___锐角三角函数和解直角三角形课件_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、锐角三角函数和解直角三角形复习课 黄垓中学黄垓中学 李索金李索金1锐角三角函数的意义,锐角三角函数的意义,RtABC中,设中,设C90,为为 RtABC的一个锐角,则:的一个锐角,则: 的正弦的正弦 sin . 的余弦的余弦 cos . 的正切的正切 tan .要点梳理要点梳理的对边的对边斜边斜边 的的邻边边斜边斜边 的对边的对边的的邻边边 230、45、60的三角函数值,如下表:的三角函数值,如下表:正弦正弦余弦余弦正切正切30456012 32 33 22 22 132 12 3 3同角三角函数之间的关系:同角三角函数之间的关系: sin2cos2 ; tan . 互余两角的三角函数关系式

2、:互余两角的三角函数关系式:(为锐角为锐角) sin ; cos . 函数的增减性:函数的增减性:(090) (1)sin,tan的值都随的值都随 ; (2)cos都随都随 sincos 1cossin增大而增大增大而增大增大而减小增大而减小4解直角三角形的概念、方法及应用解直角三角形的概念、方法及应用 解直角三角形:由直角三角形中除直角外的已知元素,求出所解直角三角形:由直角三角形中除直角外的已知元素,求出所有未知元素的过程叫做解直角三角形有未知元素的过程叫做解直角三角形 直角三角形中的边角关系:在直角三角形中的边角关系:在RtABC中,中,C90,A、B、C所对的边分别为所对的边分别为a、

3、b、c则:则: (1)边与边的关系:边与边的关系: ; (2)角与角的关系:角与角的关系: ; (3)边与角的关系:边与角的关系: .5三角形面积公式:三角形面积公式:S ah .a2b2c2AB90sinAcosB ,cosAsinB ;ac bc tanA ,tanBab ba 12 absinC12 1(2011烟台烟台)如果如果ABC中,中,sin Acos B ,则下列最确,则下列最确切的结论是切的结论是() AABC是直角三角形是直角三角形 BABC是等腰三角形是等腰三角形 CABC是等腰直角三角形是等腰直角三角形 DABC是锐角三角形是锐角三角形 解析:当解析:当sinA ,co

4、sB 时,时,AB45, 所以所以ABC是等腰直角三角形是等腰直角三角形基础自测基础自测C22 22 2(2011湖州湖州)如图,已知在如图,已知在RtABC中,中, C90,BC1,AC2,则,则tan A的值为的值为() A2 B. C. D. 解析:在解析:在RtABC中,中,C90, tanA .12 BBCAC 12 3(2011茂名茂名)如图,已知如图,已知45Acos A Csin Atan A Dsin Acos A 解析:当解析:当45AB,BCAC, 在在RtABC中,中,sinA ,cosA , sinAcosA.BBCAB ACAB 4(2011镇江镇江)如图,在如图,

5、在RtABC中,中,ACB90,CDAB,垂足为垂足为D. 若若AC ,BC2,则,则sinACD的值为的值为() A. B. C. D. 解析:在解析:在RtABC中,中,ACB90, AC ,BC2,则,则AB3. 由由CDAB,得,得ACDB, 所以所以sinACDsinB .A5 ACAB 53 5(2011苏州苏州)如图,在四边形如图,在四边形ABCD中,中,E、F分别是分别是AB、AD的的中点若中点若EF2,BC5,CD3,则,则tan C等于等于() A. B. C. D. 解析:连接解析:连接BD,因为,因为E、F分别是分别是AB、 AD的中点,所以的中点,所以EF是是ABD的

6、中位线,的中位线, BD2EF224. 在在BCD中,中,BD4,BC5,CD3. 由由BD2CD2BC2,得,得BDC90, 所以所以tanC .BBDCD 43 题型一特殊角三角函数参与实数运算题型一特殊角三角函数参与实数运算【例例 1】 计算计算tan45sin454sin30cos45 tan30. 解:原式解:原式1 4 .探究提高探究提高 利用特殊角的三角函数值进行数的运算,往往与绝对值、乘方、利用特殊角的三角函数值进行数的运算,往往与绝对值、乘方、开方、二次根式相结合准确地记住三角函数值是解决此类题目开方、二次根式相结合准确地记住三角函数值是解决此类题目的关键,所以必须熟记的关键

7、,所以必须熟记题型分类题型分类 深度剖析深度剖析22 12 22 6 33 22 2 2 22 知能迁移知能迁移1计算:计算: (1) tan45的值是的值是_; 解析:解析: tan45 1110.0sin60cos30 3232 (2)2sin60_; 解析:解析:2sin602 .(3) _. 解析:解析: |tan301| 1tan301 .32 3 3 133 tan301 2 33 题型二仰角、俯角、方位角有关问题题型二仰角、俯角、方位角有关问题【例例 2】 已知:如图,在某建筑物已知:如图,在某建筑物AC上,挂着上,挂着“美丽山东美丽山东”的宣的宣传条幅传条幅BC,小明站在点,小

8、明站在点F处,看条幅顶端处,看条幅顶端B,测得仰角为,测得仰角为30,再往条幅方向前行再往条幅方向前行20m到达点到达点E处,看到条幅顶端处,看到条幅顶端B,测得仰角,测得仰角为为60,求宣传条幅,求宣传条幅BC的长的长(小明的身高不计,结果用含有根小明的身高不计,结果用含有根号的式子表示号的式子表示)解:设解:设BCx,在,在RtBCF中,中,tanF , CF x. 在在RtBCE中,中,tanBEC , EC x. FEFCEC, x x20. x20,x10 . 答:宣传条幅答:宣传条幅BC的长是的长是10 m.BCCF xtan30 3 BCEC xtan60 33 3 33 2 3

9、3 3 3 知能迁移知能迁移2(2011潜江潜江)五月石榴红,枝头鸟儿歌一只小鸟从石五月石榴红,枝头鸟儿歌一只小鸟从石榴树上的榴树上的A处沿直线飞到对面一房屋的顶部处沿直线飞到对面一房屋的顶部C处从处从A处看房屋处看房屋顶部顶部C处的仰角为处的仰角为30,看房屋底部,看房屋底部D处的俯角为处的俯角为45,石榴树,石榴树与该房屋之间的水平距离为与该房屋之间的水平距离为3 m,求出小鸟飞行的距离,求出小鸟飞行的距离AC和和房屋的高度房屋的高度CD.3 解:作解:作AECD于点于点E. 由题意可知:由题意可知:CAE30,EAD45,AE3 m. 在在RtACE中,中,tanCAE ,即,即tan

10、30 . CE3 tan 303 3m, AC2CE236(m). 在在RtAED中,中,ADE90EAD904545, DEAE3 (m) DCCEDE(33 )m. 答:答:AC6m,DC(33 )m. 3 CEAE CE3 3 3 3 33 3 3 3 例例3(2011安顺安顺)一次数学活动课上,老师带领学生去测一条南北一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点流向的河宽,如图所示,某学生在河东岸点A处观测到河对岸水处观测到河对岸水边有一点边有一点C,测得,测得C在在A北偏西北偏西31的方向上,沿河岸向北前行的方向上,沿河岸向北前行40m到达到达B处

11、,测得处,测得C在在B北偏西北偏西45的方向上,请你根据以上的方向上,请你根据以上数据,求这条河的宽度数据,求这条河的宽度(参考数值:参考数值:tan 31 )解:如图,过点解:如图,过点C作作CDAB于于D , 由题意由题意DAC31,DBC45, 设设CDBDx, 则则ADABBD40 x, 在在RtACD中,中,tanDAC ,则,则 , 解得解得x60. 答:这条河的宽是答:这条河的宽是60m.CDAD x40 x 35 题型三解直角三角形在实际中的应用题型三解直角三角形在实际中的应用【例例 4】 (2010杭州杭州) 如图,台风中心位于点如图,台风中心位于点P,并沿东北方向,并沿东北

12、方向PQ移动,已知台风移动的速度为移动,已知台风移动的速度为30千米千米/时,受影响区域的半径为时,受影响区域的半径为200千米,千米,B市位于点市位于点P的北偏东的北偏东75方向上,距离方向上,距离P点点320千米千米处处 (1)说明本次台风会影响说明本次台风会影响B市;市; (2)求这次台风影响求这次台风影响B市的时间市的时间 解题示范解题示范规范步骤,该得的分,一分不丢!规范步骤,该得的分,一分不丢!解:解:(1)作作BHPQ于点于点H,在,在RtBHP中,由条件知,中,由条件知, PB320,BPQ754530, 得得BH320sin30160200, 本次台风会影响本次台风会影响B市

13、市 44分分 (2)如图,若台风中心移动到如图,若台风中心移动到P1时,台风时,台风 开始影响开始影响B市,台风中心移动到市,台风中心移动到P2时,时, 台风影响结束台风影响结束 由由(1)得得BH160,由条件得,由条件得BP1BP2200, P1P22 240, 88分分 台风影响的时间台风影响的时间t 8(小时小时) 1010分分 20021602 24030 知能迁移知能迁移4(2010乌鲁木齐乌鲁木齐)某过街天桥的截面图为梯形,如图所某过街天桥的截面图为梯形,如图所示,其中天桥斜面示,其中天桥斜面CD的坡度为的坡度为i1 ,(i1 是指铅直是指铅直高度高度DE与水平宽度与水平宽度CE

14、的比的比),CD的长为的长为10m,天桥另一斜面,天桥另一斜面AB坡角坡角ABG45. (1)写出过街天桥斜面写出过街天桥斜面AB的坡度;的坡度; (2)求求DE的长;的长; (3)若决定对该过街天桥进行改建,使若决定对该过街天桥进行改建,使AB斜面的坡度变缓,将其斜面的坡度变缓,将其45坡角改为坡角改为30,方便过路群众,改建后斜面为,方便过路群众,改建后斜面为AF.试计算此试计算此改建需占路面的宽度改建需占路面的宽度FB的长的长(结果精确结果精确0.01)3 3 解:解:(1)在在RtAGB中,中,ABG45, AGBG, AB的坡度的坡度 1. (2)在在RtDEC中,中,tanC ,

15、C30. 又又CD10,DE CD5. (3)由由(1)知,知,AGBG5,在,在RtAFG中,中,AFG30, tanAFG ,即,即 , 解得解得FB5 53.66. 答:改建后需占路面宽度约为答:改建后需占路面宽度约为3.66 m.AGBG DEEC 13 33 12 AGFG 33 5FB5 3 方法与技巧方法与技巧 1. 准确理解三角函数概念,熟练运用正弦、余弦、正切的定准确理解三角函数概念,熟练运用正弦、余弦、正切的定义义 2. 形成解直角三角形思考过程的程序:在不同的条件下,应形成解直角三角形思考过程的程序:在不同的条件下,应有不同的考虑;无论什么条件下,分别求解各未知元素时,应

16、有不同的考虑;无论什么条件下,分别求解各未知元素时,应尽量代入已知的数值,少用在前面的求解中刚刚算出的数值,尽量代入已知的数值,少用在前面的求解中刚刚算出的数值,以减少以错传误的机会以减少以错传误的机会 3. 解直角三角形应用题的思考方法:解直角三角形应用题的思考方法: (1)寻求各类应用题的共同思考步骤:寻求各类应用题的共同思考步骤: 审题,把情景尽可能弄通、弄细致,甚至画个示意图;审题,把情景尽可能弄通、弄细致,甚至画个示意图; 把示意图转化为几何图;把示意图转化为几何图;思想方法思想方法 感悟提高感悟提高 从要求的量所在的直角三角形分析,解之,若条件不足,从要求的量所在的直角三角形分析,解之,若条件不足,转而先去解所缺条件所在的直角三角形,然后返回;若条件仍转而先去解所缺条件所在的直角三角形,然后返回;若条件仍不足,再去解第二次所缺条件所在的直角三角形,直至与全部不足

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论