下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、23.4二次函数与一元二次方程第一课时教学目标1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。教学重点1、体会方程与函数之间的联系.2、理解何时方程有两个不等的实根,两个相等的实数和没有实根.3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.教学难点1、探索方程与函数之间的联系的过程.2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.教具准
2、备多媒体课件教学过程一、复习1、一元二次方程-5x2+40x=0的根为: 。2、一元二次方程ax2+bx+c=0(a0)的根的判别式 = 。当0方程根的情况是: ;当=0时,方程 ; 当0时,方程 。3、二次函数y=ax2+bx+c(a、b、c是常数,且a0)图像是一条 ,它与x轴的交点有几种可能的情况?二、创设问题情境,引入新课 师:上学期我们学习了一元一次方程kx+b=0(k0)和一次函数y=kx+b(k0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k0)的图象与x轴交点的横坐标即为一
3、元一次方程kx+b=0的解. 现在我们学习了一元二次方程ax2+bx+c=0(a0)和二次函数y=ax2+bx+c(a0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.三、活动探究 二次函数y= x2+2x, y=x2-2x+1, y= x2-2x+2的图象如下图所示. (1)每个图象与x轴有几个交点? (2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?解方程验证一下:一元二次方程x2-2x+2=0有根吗? (3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx
4、+c=0的根有什么关系? 师:还请大家先讨论后解答. 答:(1)二次函数y= x2+2x,y=x2-2x+1,y=x2-2x+2的图象与x轴分别有两个交点,一个交点,没有交点. (2)一元二次方程x2+2x=0有两个根0,-2;方程x2-2x+1=0有两个相等的根1或一个根1;方程x2-2x+2=0没有实数根. (3)从观察图象和讨论中可知,二次函数y= x2+2x的图象与x轴有两个交点,交点的坐标分别为(0,0),(-2,0),方程x2+2x=0有两个根0,-2; 二次函数y
5、=x2-2x+1的图象与x轴有一个交点,交点坐标为(1,0),方程x2-2x+1=0有两个相等的实数根(或一个根)1;二次函数y= x2-2x+2的图象与x轴没有交点,方程x2-2x+2=0没有实数根. 由此可知,二次函数y=ax2+bx+c的图象和x轴交点的横坐标即为一元二次方程ax2+bx+c=0的根。 总结:二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点.当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根。四、课堂练习1、若方程ax2+bx+c
6、=0的根为x1=-2和x2=3,则二次函数y=ax2+bx+c的图象与x轴交点坐标是 。2、抛物线y=0.5x2-x+3与x轴的交点情况是( ) A、两个交点 B、一个交点 C、没有交点 D、画出图象后才能说明3、抛物线y=x2-4x+4与轴有 个交点,坐标是 、。4、不画图象,求抛物线y=x2-3x-4与x轴的交点坐标。5、(P28练习3)证明:抛物线y=x2-(2p-1)x+p2-p与x轴必有两个不同的交点。6、(拓展练习)一元二次方程x2-4x+4=1的根与二次函数y=x2-4x+4的图象有什么关系?试把方程的根在图象上表示出来。五、课堂小结二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点.当二次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年雅安职业技术学院单招职业适应性测试备考试题及答案解析
- 2026年浙江长征职业技术学院单招职业适应性考试参考题库及答案解析
- 2026年广州城建职业学院单招职业适应性测试备考题库及答案解析
- 2026年山西国际商务职业学院单招职业适应性考试参考题库及答案解析
- 2026年安徽交通职业技术学院单招职业适应性测试备考试题及答案解析
- 2026年江西枫林涉外经贸职业学院单招职业适应性测试备考题库及答案解析
- 期中考试检讨书(合集15篇)
- 2026年安徽汽车职业技术学院单招职业适应性测试模拟试题及答案解析
- 2026年铜仁职业技术学院单招职业适应性考试模拟试题及答案解析
- 校外实习总结(合集15篇)
- 2025年重庆青年职业技术学院非编合同制工作人员招聘68人备考题库及一套答案详解
- 2025年常熟市交通产业投资集团有限公司(系统)招聘14人备考题库含答案详解
- 临沂市公安机关2025年第四季度招录警务辅助人员备考题库新版
- 2025年新版中医药学概论试题及答案
- 深圳市龙岗区2025年生物高一上期末调研模拟试题含解析
- 栏杆劳务分包合同范本
- 江苏自考现代企业经营管理-练习题(附答案)27875
- 电力建设施工技术规范 第5部分:管道及系统-DLT 5190.5
- 2024年1月浙江省高考英语试题卷附答案
- 四川省宜宾市2023-2024学年高二物理第一学期期末联考试题含解析
- 玻璃隔墙拆除施工方案
评论
0/150
提交评论