版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数形结合在小学数学中的运用数形结合是数学中重要思想方法之一。 它既具有数学学科的鲜明特点, 又是 数学研究的常用方法。 数形结合思想 就是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合。赞科夫说:“教会学生思考 ,这对学生来说 ,是一生中最有价值的本钱” ,而要 教会学生思考 , 实质是要教会学生掌握数学的思想方法。常用的数学思想方法有 很多, 而数形结合思想具有数学学科的鲜明特点 , 是解决许多数学问题的有效思 想。将抽象的数量关系形象化,具有直观性强,易理解、易接受的特点。将直观 图形数量化,转化成数学运算, 常会降低难度,并且使知识的理解更加深刻明了。一、数形结合的功能1
2、、有利于记忆由于数学语言比较抽象, 而图形语言则比较形象。 利用图形语言进行记忆速 度快,记得牢。笛卡尔曾说: “没有任何东西比几何图形更容易印入脑际了。因 此,用这种方式来表达事物是非常有益的。”同时,由于图象是“形象”的,语 言是“抽象”的,因此对图形的记忆往往保持得比较牢固。2、有助于思考用图进行思维可以说是数学家的思维特色。 往往一个简单的图象就能表达复 杂的思想, 因此图象语言有助于数学思维的表达。 在数学中,有时看到学生遇到 难题百思不得其解时, 如能画个草图稍加点拔, 学生往往思路大开。 究其原因就 是充分发挥了图象语言的优越性。二、培养学生数形结合思想方法的措施1、强化意识,体
3、会作用我国著名数学家华罗庚所说: “数缺形时少直观, 形少数时难入微, 数形结 合百般好,隔裂分家万事休。 ”数形结合思想方法能巧妙地实现数与形之间的互 换,使得看似无法解决的问题简单化、明朗化,让人有“山穷水尽疑无路,柳暗 花明又一村” 的感觉。数形结合思想方法在解题中的重要性决定了它在平时的教 学中也应该受到重视。 在数学教学中教师要有意识地沟通数、 形之间的联系, 帮 助学生逐步树立起数形相结合的观点, 提高主动运用的意识, 并使这一观点扎根 到学生的认知结构中去, 成为运用自如的思想观念和思维工具, 从而提高学生数 学修养与解题能力。例如,学生学完长方形和正方形的周长后, 有一题是这样
4、的: 用4 个变长为 2 厘米的正方形拼成一个长方形或正方形, 周长最大是多少?最小是多少 ( 周长 为整厘米数 ) ? 一开始学生看不懂,问我“老师,什么意思?”我说:“看不懂 的话,照题目说的拼拼看,可以同桌合作。先想有几种拼法?再想拼好后长和宽各是多少?”在我的启发下,学生很快拼出了两种 :2 厘米8 厘米4厘米第一种:(8+2)X 2=20厘米第二种:4 X 4=16厘米在这样的探究过程中, 教师把 “数学结合思想方法” 有意识的渗透在学生获 得知识和解决问题的过程中,充分利用直观图形,把抽象内容视觉化、具体化、 形象化,化深奥为浅显,让学生在观察、实验、分析、抽象、概括的过程中,看
5、到知识背后负载的方法、 蕴涵的思想, 那么,学生所掌握的知识才是鲜活的, 可 迁移的,学生的数学素质才能得到质的飞跃。2、扩大范围, 广泛应用 要培养学生数形结合思想方法,首先教师要切实掌握数形结合的思想方法, 以数形相结合的观点钻研教材, 努力挖掘教材中可以进行数形结合思想方法渗透 的各种因素 , 都要考虑如何结合具体内容进行数形结合思想方法渗透。“数形结 合思想方法”包含“以形助数”和“以数辅形”两个方面,在小学数学“数与代 数”领域教学中, 用得最多的是前者, 我们可以把数学结合思想方法渗透在教学 中的每一内容。以数与形相结合的原则进行教学。(1)数的认识方面,例如在教学 1 000以内
6、数的认识这节课教学中利用 小立方体有效的帮助学生构建知识, 以及初步感知十进制的计数方法。 数数的难 点就是接近整百的数,学生无法感受抽象的数数之间满 1 0的变化,那么我们就 将数数的抽象思考方式放大,将思维暴露出来,让学生通过观察小方块的变化, 一对一的数数, 在数到 9 变成 10 时,通过演示让学生理解 10 的由来同时强化十 进制关系。同时通过 “形”来感知数的多少,既形象又深刻,培养了学生良好 的数感。(2)数的运算方面,借助“形”来帮助学生理解非常重要,除了我们常用 的可以利用小棒等实物或图形来理解算理外, 我们还可以丰富其内容, 如:被减 数中间有 0 的减法,可以利用计数器有
7、效的突破难点。(3)问题解决方面,借助数形结合能化抽象为形象,帮助学生建立直观模 型,让数量关系更形象、更清晰。例如:公鸡有 50 只,比母鸡少 15只。母鸡有 几只?用线段图:公鸡 50 只母鸡 15 只?只从线段图中很直观地看出母鸡的只数由两部分组成: 与公鸡同样多的部分和 多出来的部分, 列式 50+15=65(只)整个过程数形结合, 在直观图示的导引下, 使问题化难为易,化抽象为具体。(4)常见的量方面,例如在教学 24 时记时法的教学中可以利用钟表上 的刻度, 1个大格代表 1小时, 24小时就是钟面上的时针走了 2 圈,同时形象的 理解了 0时和 24时在同一点上,让具体的“形”与
8、抽象的数相辅相成。(5)式与方程方面,例如,在认识方程的教学过程中,可以利用天平秤中 的等量帮助学生理解方程中的等量关系。(6)几何方面,例如,一个长方体的表面积是 14平方厘米, 并能把这个长 方体分割成 3个完全相同的正方体, 求每个正方体的表面积是多少平方厘米?通 过画图可以把抽象的问题形象化。以上例子仅是代表而已, 只要我们留意,数形结合思想方法存在 “数与代数” 领域的每一个角落。三、图形结合的方法数形结合的思想方法是数学学科里最常用的一种方法, 它包含了转化、配方、 分类讨论、 方程思想等数学思想方法, 可见数形结合思想方法是数学中极具综合 性的思想方法。 在平常的教学活动中让学生
9、学到数形结合的方法。 教师可以采用 多种方式精心组织学生训练, 让学生置身于具体的教学过程, 才能在教师的引导 下逐步领悟,理解和掌握。可以采用以下方式:1、运用或联想实物。2、画图。画图的形式很多,包括画线段图、画图形、画示意图、画面积图、 画点子图、集合图等等。3、利用数轴。数轴是体现数形结合思想的一个重要方法。利用数轴,找到 实数与数轴上的点的对应关系, 让数与数轴这个 “形”,紧密融合在一起。 例如, 教学小数大小比较 时,由于学生在学习本节课的内容之前只是初步的认识了 小数,还没有深入的学习小数的意义, 因此学生在总结比较的方法时用抽象的数 学语言比较困难。 当文字的表述有困难时,
10、利用数轴能很好的解决这一问题。 因 为对于每一个小数, 数轴上都有唯一确定的点与它对应, 因此, 两个小数的大小 比较,是通过这两个小数在数轴上的对应点的位置关系进行的。 借助数轴让学生 理解小数的大小, 知道在数轴上越往后这个数越大, 越往前这个数就越小。 这节 课还设计了这样一道练习:0.4 > ( ) > ( ) > ( ) > ( )>0.3在数轴上找出小于 0.4 大于 0.3 的小数以及能找出几个,这个练习借助数 轴,让抽象的数学变得具体、形象。4、几何模型。例如,教学 “ 1 1/2 1/4 1/8-1/16,对于小学生来说由于逻辑推理有一定的难度, 一批中下学生不容易明白, 如果采 用几何模型进行教学, 学生都轻松的掌握了。 将上面的算式构造成下面的几何模 型图,把一个大正方形看成单位“ 1” ,一次又一次地进行平均分, 从图上很容易看出1 1/2 1/4 1/8-1/16 =。运用数形结合思想方法可以把代 数与几何沟通了, 使形直观地反映数内在的联系, 拓宽思路,把复杂问题简单化, 从而顺利且快速的解决问题, 使数学知识变的更有生命力, 让人回味无穷。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年浙江国企招考真题及答案
- 2025年最后一届科技考试试题及答案
- 2025年中级养殖工考试题及答案
- 2025云南楚雄金泰人力资源和社会保障事务有限公司招聘劳务派遣工作人员10人笔试历年备考题库附带答案详解2套试卷
- 2025中航西安飞机工业集团股份有限公司校园招聘笔试历年常考点试题专练附带答案详解2套试卷
- 2025中华联合财产保险股份有限公司嘉兴中心支公司招聘7人(浙江)笔试备考题库含答案解析(3卷合一)
- 2025下半年浙江绍兴市产业投资发展集团有限公司招聘专业人员总及人员笔试历年常考点试题专练附带答案详解2套试卷
- 2025上汽乘用车福建分公司校园招聘50人笔试历年备考题库附带答案详解2套试卷
- 2025年江门的初中考试试题及答案
- 编程逻辑面试题及答案
- 幼儿园安全教育课件:《不挤不抢懂礼让》
- 2021-2022学年-有答案-天津市部分区八年级(上)期中物理试卷
- 半导体器件物理-薄膜晶体管(TFT)-课件
- 造影剂外渗的原因
- 2021北京171中学初一(上)期中数学(教师版)
- LY/T 2010-2012自然保护区生态旅游设施建设通则
- GB/T 13564-2005滚筒反力式汽车制动检验台
- 口腔-先天性唇腭裂课件
- 特种设备作业人员补(换)证申请表
- 球墨铸铁700-10生产技术工艺
- 康华光《数字电子技术基础》第五版课后答案全
评论
0/150
提交评论