



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高等数学上册第一章函数与极限(一) 函数1、 函数定义及性质 (有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数;4、 函数的连续性与间断点;函数f (x)在x0连续limf (x)f ( x0 )x x0第一类:左右极限均存在。间断点可去间断点、跳跃间断点第二类:左右极限、至少有一个不存在。无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。(二) 极限1、定义1)数列极限lim xn a0, N,n N , xnan2)函数极限l
2、im f ( x) A0,0,x, 当 0x x0时, f ( x)xx0左 极 限 : f ( x0 ) limf ( x)右极限:x x 0f ( x0 )lim f ( x)x x0limf ( x) A 存在f ( x0 )f ( x0 )xx02、极限存在准则1)夹逼准则:1) ynxnzn ( n n0 )2) lim ynlim znalim xnannn2)单调有界准则:单调有界数列必有极限。3、无穷小(大)量1)定义:若 lim0 则称为无穷小量; 若 lim则称为无穷大量。2)无穷小的阶: 高阶无穷小、 同阶无穷小、 等价无穷小、阶无穷小Th1o() ;Th2, lim存在
3、,则limlim(无穷小代换)4、求极限的方法1)单调有界准则;2)夹逼准则;3)极限运算准则及函数连续性;4)两个重要极限:a)lim sin x1x 0x11) xb) lim (1x) xlim (1ex0xx5)无穷小代换:( x0 )a)x sin x tan x arcsin x arctan xb)1 cosx 1 x2ex2( axc)1 x1 xln a )d)e)ln(1x) x( log a (1 x) x)ln a(1 x)1 x第二章导数与微分(一) 导数1、2、3、定义: f ( x0 ) limf ( x)f (x0 )xx0x x0左导数: f(x0 )f (
4、x) f ( x0 )limxx0xx0右导数: f( x0 )f ( x) f ( x0 )limxx0xx0函数 f (x) 在 x0 点可导f( x0 ) f ( x0 )几何意义: f ( x0 ) 为曲线 yf (x) 在点 x0 , f ( x0 ) 处的切线的斜率。可导与连续的关系:4、求导的方法1) 导数定义;2) 基本公式;3) 四则运算;4) 复合函数求导(链式法则) ;5) 隐函数求导数;6) 参数方程求导;7) 对数求导法。5、高阶导数d 2 yddy1) 定义: dx2dxdxnCk u( k )v( n k )2) Leibniz公式:uv( n)kn0(二) 微分
5、1) 定义:yf ( x0x)f ( x0 )A x o( x) ,其中 A与x 无关。2)可微与可导的关系:可微可导,且dyf ( x0 ) xf ( x0 )dx第三章 微分中值定理与导数的应用(一) 中值定理1、 Rolle 定理:若函数 f (x) 满足:1) f ( x) Ca, b ; 2) f ( x)D(a,b) ;3)f (a)f (b) ;则( a,b), 使 f ( )0.2、 Lagrange中值定理:若函数f (x) 满足:1) f ( x)Ca, b ; 2) f ( x)D(a,b) ;则(a, b), 使 f (b)f (a)f ()(b a) .3、 Cauc
6、hy 中值定理:若函数f ( x), F ( x) 满足:1) f ( x), F ( x)Ca, b ; 2) f ( x), F ( x)D(a, b) ;3) F (x) 0, x(a,b)则(a, b), 使 f (b)f (a)f ()F (b)F (a)F ()(二) 洛必达法则注意 :1、尽量先化简(有理化、无穷小代换、分离非零因子)再用洛必达法则!如: lim1 x2cos xtan4xx 02、对于某些数列极限问题,可化为连续变量的极限,然后用洛必达法则!nn an b如: limn2(三) Taylor 公式n 阶 Taylor 公式:f ( x) f ( x )f ( x
7、0)( x x )f ( x0 ) ( xx ) 2002!0f ( n ) ( x )x )nf(n 1) ( )x )n 10 ( x( xn!0(n 1)!0在 x0 与 x 之间 .当 x00 时,成为 n 阶麦克劳林公式:f (x)f (0)xf (0)2f( n) (0)nf ( n 1) ( )f (0)xx(n 1)!1!2!n!在 0 与 x 之间 .常见函数的麦克劳林公式:1) ex1 x1 x21 xnexn 12!n!(n 1)!在 0与 x 之间,x;2)x3x5x7x 2m 1sin(2m 1)2 x2sin x x5!( 1) m 1(2m 1)!3!7!(2m
8、1)!在 0 与 x 之间,x;3)cosx 1x2x4x6( 1) m 1x2 m 2cos2m2 x2 m2!4!6!(2m 2)!( 2m)!在 0与 x 之间,x;4)ln(1 x) xx2x3x4( 1) n 1 xn( 1)n xn 1234n(n 1)(1 ) n 1在 0 与 x 之间,1x 15)(1 x) 1 x( 1) x2 (1)(2) x3( 1) ( n2!3!n!(1) (n)(1 ) n 1xn 1(n1)!,在 0 与 x 之间,1x1 .(四) 单调性及极值1、单调性判别法:则 若 f (x)f ( x)C a, b , f ( x)0 , 则f (x) 单
9、 调 增D(a, b) ,加;则若f (x)0 ,则 f (x) 单调减少。2、极值及其判定定理:a) 必要条件: f (x) 在 x0 可导,若 x0 为 f (x) 的极值点,则 f ( x0 )0 .b) 第一充 分条件 : f (x) 在 x0 的邻域内可 导, 且 f ( x0 ) 0 ,则 若当 x x0 时, f ( x) 0 ,当x x0 时, f (x) 0 ,则 x0 为极大值点;若当x x0 时, f (x) 0 ,当 x x0 时, f (x) 0 ,则 x0 为极小值点;若在 x0 的两侧 f ( x) 不变号,则 x0 不是极值点。c) 第 二充分条 件: f (x
10、) 在 x0 处 二阶 可导 ,且f ( x0 ) 0 , f( x0 ) 0 ,则 若 f( x0 )0 , 则 x0 为 极 大 值 点 ; 若f ( x0 ) 0,则 x0为极小值点。3、凹凸性及其判断,拐点1)f (x)在区间I上连续,若x1 , x2I ,f ( x1x2 )f ( x1 )2f (x2 ) ,则称 f ( x) 在区间2I上的图形是凹的;若x1 , x2 I , f ( x1 x2 )f (x1 ) f ( x2 ),则称 f ( x) 在区间22I 上的图形是凸的。2)判定定理: f (x) 在 a,b 上连续,在 (a, b) 上有一阶、二阶导数,则a) 若x(
11、a, b), f( x)0,则 f (x)在 a, b 上的图形是凹的;b) 若x(a, b), f( x)0,则 f (x)在 a, b 上的图形是凸的。3)拐点:设 yf (x) 在区间 I 上连续, x0 是 f (x) 的内点,如果曲线 yf ( x) 经过点 ( x0 , f ( x0 ) 时,曲线的凹凸性改变了,则称点 ( x0, f ( x0 ) 为曲线的拐点。(五) 不等式证明1、利用微分中值定理;2、利用函数单调性;3、利用极值(最值)。(六) 方程根的讨论1、连续函数的介值定理;2、 Rolle定理;3、函数的单调性;4、极值、最值;5、 凹凸性。(七) 渐近线limf (
12、 x),则 xa 为一条铅直渐1、 铅直渐近线: x a近线;2、 水平渐近线:lim f (x)b ,则 yb 为一条水平渐x近线;3、 斜渐近线: limxf ( x)k lim f ( x)kx b 存在,xx则 y kx b 为一条斜渐近线。(八) 图形描绘步骤 :1. 确定函数 y f (x) 的定义域,并考察其对称性及周期性;2. 求 f ( x), f ( x) 并求出 f (x) 及 f (x) 为零和不存在的点;3. 列表判别函数的增减及曲线的凹向 , 求出极值和拐点 ;4. 求渐近线 ;5. 确定某些特殊点 , 描绘函数图形 .第四章不定积分(一) 概念和性质1、原 函数
13、:在区 间I 上 , 若函 数 F (x) 可 导 ,且F (x)f (x) ,则 F (x) 称为 f (x) 的一个原函数。2、不定积分:在区间I 上,函数 f (x) 的带有任意常数的原函数称为f (x) 在区间 I 上的不定积分。3、基本积分表( P188 ,13 个公式);4、性质(线性性)。(二) 换元积分法1、第一类换元法(凑微分):f (x)( x)dxf (u)du u( x)2、第二类换元法(变量代换):f (x) dxf (t )(t )dt1( x)t(三) 分部积分法:udvuvvdu(四) 有理函数积分1、“拆;”2、变量代换(三角代换、倒代换等) 。第五章定积分(
14、一) 概念与性质:bn1、 定义: af ( x)dxlimf ( i )xi0i 12、 性质:(7 条)性质 7(积分中值定理)函数 f (x) 在区间 a,b 上连续,bf ( x)dxf ( )( ba) (平均值:则 a,b ,使 abf ( x) dxf ( )a)ba(二) 微积分基本公式( NL 公式)x( x) f (x)1、 变上限积分:设( x)f (t )dt ,则a推广:d( x )f ( x)( x)f ( x)( x)dxf (t)dt( x )2、 NL公式:若 F ( x) 为 f ( x)的一个原函数,则bF (b)F ( a)f ( x) dxa(三) 换
15、元法和分部积分b1、 换元法: af ( x)dxf (t)(t) dtbuv abb2、 分部积分法:audvavdu(四) 反常积分1、 无穷积分:f ( x) dxlimtf ( x) dxatabf ( x) dxlimbtf ( x) dxtf ( x) dx0f ( x)dxf ( x) dx02、 瑕积分:bbaf ( x ) dxlimtf ( x ) dx (a 为瑕点)tabf ( x )dxlimtf ( x) dx (b 为瑕点)aatb两个重要的反常积分:dx,p1a1p1)ax p, p1p1(ba)1 q1bdxbdx, q1q2)a ( xa)qa (bx)q,
16、q1第六章定积分的应用(一) 平面图形的面积b2 ( x) f1 ( x) dx1、 直角坐标: A fa2、 极坐标: A122()12 ( ) d2(二) 体积1、 旋转体体积:a)曲边梯形 yf ( x), xa, xb, x 轴,绕 x 轴旋转而成的旋转体的体积: V xb2 ( x) dxfab)曲边梯形 yf ( x), xa, xb, x 轴,绕 y 轴旋转而 成的旋 转 体 的 体积 : V yb2 xf ( x) dxa(柱壳法)2、 平行截面面积已知的立体: VbA( x) dxa(三) 弧长1、 直角坐标: s2、 参数方程: s3、 极坐标: sbf( x )2 dx1
17、a( t )2( t )2 dt() 2( )2 d第七章微分方程(一) 概念1、 微分方程:表示未知函数、未知函数的导数及自变量之间关系的方程。阶:微分方程中所出现的未知函数的最高阶导数的阶数。2、 解:使微分方程成为恒等式的函数。通解:方程的解中含有任意的常数,且常数的个数与微分方程的阶数相同。特解:确定了通解中的任意常数后得到的解。(二) 变量可分离的方程g( y)dyf (x)dx ,两边积分g( y)dyf ( x)dx(三) 齐次型方程dyyydx( x ) ,设 u xdxxx或 dy( y ) ,设 v y,则,则dyux dudxdx ;dxvy dvdydy(四) 一阶线性
18、微分方程dyP( x) y Q( x)dx用常数变易法或用公式:y eP( x)dxP( x) dxQ( x)edx C(五) 可降阶的高阶微分方程1、 y(n)f (x) ,两边积分 n 次;2、 yf ( x, y )(不显含有 y ),令 yp ,则 yp ;3、yf ( y, y )(不显含有 x ),令 yp ,则 yp dpdy(六) 线性微分方程解的结构1、 y1, y2 是齐次线性方程的解,则C1 y1C2 y2 也是;2 、 y1, y2 是 齐次线 性 方程的 线性 无 关的 特 解, 则C1y1 C2 y2 是方程的通解;3 、 y C1 y1 C2 y2y*为非齐次方程的通解,其中y1 , y2 为对应齐次方程的线性无关的解, y* 非齐次方程的特解。(七) 常系数齐次线性微分方程二阶常系数齐次线性方程:ypyqy0特征方程: r 2pr q0 ,特
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- JJG(烟草)30-2016卷烟端部落丝测定仪检定规程振动法
- 2025年美术教师编制考试模拟试卷:美术教师教学研究能力试题集
- 考研复习-风景园林基础考研试题【各地真题】附答案详解
- 风景园林基础考研资料试题及参考答案详解ab卷
- 泰州市2024-2025学年五年级下学期数学期末试题一(有答案)
- 2025年河北省定州市辅警招聘考试试题题库及答案详解(必刷)
- 2024年演出经纪人之演出经纪实务押题练习试卷【必刷】 (一)
- 化学●福建卷丨2022年福建省普通高中学业水平选择性考试化学试卷及答案
- Brand KPIs for online betting:KTO in Brazil-英文培训课件2025.5
- 初中数学九年级下册统编教案 6.2黄金分割
- 《滑炒技法-尖椒炒肉丝》说课课件
- 井下电气设备防爆完好图册(新)
- 移动通信行业典型安全隐患图解
- 重度子痫前期子痫急救演练
- 以助产士为主导的连续护理模式的发展现状
- 生态系统对全球变化的响应
- 2023版中国近现代史纲要课件:09第九专题 新民主主义革命伟大胜利
- 风电场风机塔筒清洗项目四措两案(三措两案)
- 中国传统文化(西安交通大学)智慧树知到答案章节测试2023年
- 国际结算(中文)
- GB/T 3098.1-2010紧固件机械性能螺栓、螺钉和螺柱
评论
0/150
提交评论