特殊平行四边形拔高题含答案资料_第1页
特殊平行四边形拔高题含答案资料_第2页
特殊平行四边形拔高题含答案资料_第3页
特殊平行四边形拔高题含答案资料_第4页
特殊平行四边形拔高题含答案资料_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第II卷(非选择题)一、解答题(题型注释)1如图,在平面直角坐标系中,正方形OABC勺边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足-(a-4) 2> 0, c=b-22-b 8(1) 求直线y=bx+c的解析式并直接写出正方形 OABC勺对角线的交点 D的坐标;(2) 直线y=bx+c沿x轴正方向以每秒移动 1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值, 使直线EF平分正方形OABC勺面积?若存在,请求出 t的值;若不存在,请说明理由;PC点P为正方形OABC的对角线AC上的动点(端点 A C除外),PML PO交直线AB于M,求一的值BMCSO

2、留用图“1 试卷第1页,总8页试卷第#页,总8页2. 如图,矩形 OABC罢放在平面直角坐标系 xOy中,点A在x轴上,点C在y轴上,OA=3 OC=2 P是BC边上一 点且不与B重合,连结AP,过点P作/ CPD2 APB交x轴于点D,交y轴于点E,过点E作EF/ AP交x轴于点F.(1) 若厶APD为等腰直角三角形,求点 P的坐标;(2) 若以A, P, E, F为顶点的四边形是平行四边形,求直线PE的解析式.CB0Ax3. 把一个含45°角的直角三角板 BEF和一个正方形 ABCD罢放在一起,使三角板的直角顶点和正方形的顶点B重合,联结 DF,点M, N分别为DF, EF的中点

3、,联结 MA MN(1) 如图1,点E, F分别在正方形的边 CB AB上,请判断MA MN的数量关系和位置关系,直接 写出结论;(2) 如图2,点E, F分别在正方形的边 CB, AB的延长线上,其他条件不变,那么你在(1)中得到的两个结论 还成立吗?若成立,请加以证明;若不成立,请说明理由.DCADF4 .如图,已知正方形 ABCD AG BD相交于点 O, E为AC上一点,AHL EB交EB于点H, AH交BD于点F.(1) 若点E在图1的位置,判断OE与OF的数量关系,并证明你的结论;(2) 若点E在AC的延长线上,请在图 2中按题目要求补全图形,判断 OE与OF的数量关系,并证明你的

4、结论.试卷第3页,总8页试卷第#页,总8页5 .已知一个矩形纸片 OACB将该纸片放置在平面直角坐标系中,点A (11, 0),点B ( 0, 6),点P为BC边上的动点(点P不与点B C重合),经过点OP折叠该纸片,得点 B'和折痕OP设BP=t.试卷第#页,总8页图图(I) 如图,当/ BOP=30时,求点P的坐标;(n)如图,经过点 P再次折叠纸片,使点 C落在直线PB上,得点C'和折痕PQ若AQ=m试用含有t的式 子表示m;(川)在(n)的条件下,当点C'恰好落在边 OA上时,求点P的坐标(直接写出结果即可).6 .阅读下列材料:已知:如图1,在RtAABC中,

5、/ C=9C°, AC=4, BC=3, P为AC边上的一动点,以 PB, PA为边构造 口APBQ求对AP角线PQ的最小值及此时 一一的值是多少.AC02在解决这个问题时,小明联想到在学习平行线间的距离时所了解的知识: 垂直于平行线的线段最短.进而,小明构造出了如图2的辅助线,并求得决以下问题:端点分别在两条平行线上的所有线段中,PQ的最小值为3.参考小明的做法,解AP(1) 继续完成阅读材料中的问题:当PQ的长度最小时, 竺AC(2) 如图3,延长PA到点E,使AE=nPA(n为大于0的常数).以PE,AP,此时ACPB为边作口 PBQE那么对角线 PQ的最小值为(3) 如图4,

6、如果P为AB边上的一动点,延长PA到点E,使AE=nP( n为大于0的常数),以PE, PC为边作口 PCQE那么对角线PQ的最小值为7.在图1、图2、图3、图4中,点P在线段BC上移动(不与 B、C重合),M在BC的延长线上.(1) 如图1 , ABC和 APE均为正三角形,连接 CE 求证: ABPA ACE / ECM的度数为° .(2) 如图2,若四边形 ABCD四边形APEF均为正方形,连接 CE则/ ECM勺度数为 ° .如图3,若五边形 ABCDF和五边形APEGH均为正五边形,连接 CE则/ ECM的度数为° .(3) 如图4, n边形ABC和n边

7、形APE均为正n边形,连接CE,请你探索并猜想/ ECM勺度数与正多边形边数n的式子表示/ ECM的度数),并利用图n的数量关系(用含4 (放大后的局部图形)证明你的结论.试卷第5页,总8页试卷第#页,总8页OB 0A为边作矩形OBCA点E,&已知0是坐标原点,点 A的坐标是(5, 0),点B是y轴正半轴上一动点,以试卷第#页,总8页H分别在边BC和边0A上,将厶BOE沿着OE对折,使点B落在OC上的F点处,将 ACH沿着CH对折,使点A落 在0C上的G点处。(1) 求证:四边形 OECH是平行四边形;(2) 当点B运动到使得点F,G重合时,求点B的坐标,并判断四边形 OECH是什么四

8、边形?说明理由;(3) 当点B运动到使得点F,G将对角线0C三等分时,求点 B的坐标。试卷第6页,总8页试卷第#页,总8页9 倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径下 面是一案例,请同学们认真阅读、研究,完成“类比猜想”及后面的问题.习题解答:习题如图(1),点E、F分别在正方形 ABCD勺边BC CD上,/ EAF=45,连接 EF,则EF=BE+DF说明理由. 解答:正方形 ABCD中, AB=AD / BAD=/ ADC2 B=90°,把厶ABE绕点A逆时针旋转 90°至厶ADE,点 F、D E'在一条直线

9、上./ E' AF=90 - 45° =45° =/ EAF,又 AE =AE AF=AF AEAEF ( SAS EF=E F=DE +DF=BE+DF习题研究观察分析:观察图(1),由解答可知,该题有用的条件是 ABCD是四边形,点E、F分别在边BG CD上;AB=AD1/ B=Z D=9C° ;/ EAF= / BAD2类比猜想:(1)在四边形 ABCD中,点E、F分别在BC CD上,当AB=AD / B=Z D时,还有EF=BE+DF吗?研究一个问题,常从特例入手,请同学们研究:如图(2),在菱形ABCD中,点E、F分别在BCCD上,当/BAD=1

10、20 ,/ EAF=6C 时,还有 EF=BE+D吗?1(2 )在四边形 ABCD中,点 E、F 分别在 BC CD上,当 AB=AD / B+Z D=18C,Z EAF/ BAD时,EF=BE+DF吗?2归纳概括:反思前面的解答,思考每个条件的作用, 可以得到一个结论“ EF=BE+D”的一般命题:在四边形ABCD中,点 E、F 分别在 BC CD上,当 AB=AD Z B+Z D=180,Z EAF=Z BAD时,贝U EF=BE+DF .1C 提出问题:如图1,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上, 一条直角边经过试卷第#页,总8页点B,另一条直角边交边 DC

11、与点E,求证:PB=PE试卷第#页,总8页分析问题:学生甲:如图 1,过点P作PML BC, PNL CD垂足分别为 M N通过证明两三角形全等,进而证明两条 线段相等.学生乙:连接 DP,如图2,很容易证明PD=PB然后再通过“等角对等边”证明PE=PD就可以证明PB=PE了.解决问题:请你选择上述一种方法给予证明.问题延伸:如图3,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点 B,另一条直角边交DC的延长线于点E , PB=PE还成立吗?若成立,请证明;若不成立,请说明理由.试卷第7页,总8页试卷第#页,总8页11 .操作发现将一副直角三角板如图摆放,能够发现等腰直角三

12、角板 ABC的斜边与含30°角的直角三角板 DEF的长直角边DE 重合.问题解决将图中的等腰直角三角板 ABC绕点B顺时针旋转30°,点C落在BF上, AC与BD交于点0,连接CD,如图.(1) 求证: CD0是等腰三角形;(2) 若DF=8,求AD的长.12 .我们知道平行四边形有很多性质现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论【发现与证明】ABCD中, AB BC,将厶ABC沿 AC翻折至 AB C,连结 B' D.结论 1 : B' D/ AC;结论2: AB C与I ABC重叠部分的图形是等腰三角形 .请利用图1证明

13、结论1或结论2 (只需证明一个结论).【应用与探究】在ABCD中,已知/ B=30°,将 ABC沿 AC翻折至 AB C,连结 B' D.(1) 如图 1,若 AB 3, - AB D =75°,则/ ACB=° , BC=;(2) 如图2, AB =2.3 , BC=1, AB与边CD相交于点 巳求厶AEC的面积;(3) 已知AB 2 3,当BC长为多少时,是 AB D直角三角形?B1B'Si13. 如图1,在正方形 ABCD中, E是AB上一点,F是AD延长线上一点,且 DF=BE(1) 求证:CE=CF(2) 在图1中,若G在AD上,且/ G

14、CE=45,贝U GE=BE+G成立吗?为什么?(3) 根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题: 如图 2,在直角梯形 ABCD中, AD/ BC( BO AD), / B=90 , AB=BC=12 E 是 AB 的中点,且/ DCE=45,求 DE 的长; 如图3,在 ABC中,/ BAC=45 , AD丄BC BD=2 CD=3则厶ABC的面积为 (直接写出结果,不需要写出计算过程).剽图:!图3试卷第8页,总8页试卷第#页,总8页14. 如图,两个边长均为 2的正方形ABCD和正方形CDEF点B、C、F在同一直线上,一直角三角板的直角顶点 放置在D点处,DP

15、交AB于点M, DQ交BF于点N.(1) 求证: DBMA DFN (4 分)(2) 延长正方形的边 CB和EF,分别与直角三角板的两边 DP DQ(或它们的延长线)交于点G和点H,试探究下 列问题: 线段BG与FH相等吗?说明理由;(4分) 当线段FN的长是方程x22x-3=0的一根时,试求出 竺 的值.(4分)NH15. 如图所示,在菱形 ABCD中, AB=4,/ BAD=120 , AEF为正三角形,点 E、F分别在菱形的边 BC CD上滑 动,且E、F不与B、C、D重合.(1) 证明不论E、F在BC CD上如何滑动,总有 BE=CF(2) 当点E、F在BC CD上滑动时,分别探讨四边

16、形 AECF和 CEF的面积是否发生变化?如果不变,求出这个 定值;如果变化,求出最大(或最小)值.试卷第9页,总8页试卷第#页,总8页16. 如图,在正方形 ABCD中,点E、F分别是BC CD的中点,DE交AF于点M点N为DE的中点.(1) 若AB=4,求厶DNF的周长及sin / DAF的值;(2) 求证:2AD?NF=DE?DMEEC试卷第#页,总8页试卷第#页,总8页17 .在正方形 ABCD中,点F是BC延长线上一点,过点 B作BEX DF于点E,交CD于点G,连接CE.(1) 若正方形 ABCD边长为3, DF=4,求CG的长;(2) 求证:EF+EG= 2 CE.试卷第#页,总

17、8页试卷第10页,总8页18. (1)图是将线段 AB向右平移1个单位长度,图是将线段AB折一下再向右平移1个单位长度,请在图中画出一条有两个折点的折线向右平移1个单位长度的图形.(2) 若长方形的长为 a,宽为b,请分别写出三个图形中除去阴影部分后剩余部分的面积.(3) 如图,在宽为10m长为40m的长方形菜地上有一条弯曲的小路,小路宽为1m,求这块菜地的面积.19. 如图,在线段 AE的同侧作正方形 ABCD和正方形BEFG( BEk AB),连接EG并延长交 DC于点M 作MNL AB, 垂足为N, MN交 BD于点P,设正方形 ABCD勺边长为1.(1) 证明:四边形 MPBG是平行四

18、边形;(2) 设BE=x,四边形MNBG勺面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;(3) 如果按题设作出的四边形BGMP是菱形,求BE的长.试卷第11页,总8页试卷第#页,总8页20. 如图,在 Rt ABC中,/ BAC=90,/ B=60 , BC=16cm AD是斜边 BC上的高,垂足为 D, BE=1cm 点 M从 点B出发沿BC方向以1cm/s的速度运动,点 N从点E出发,与点M同时同方向以相同的速度运动,以 MN为边在 BC的上方作正方形 MNGH点M到达点D时停止运动,点 N到达点C时停止运动.设运动时间为 t (s).(1 )当t为何值时,点 G刚好落在线段

19、 AD上?(2) 设正方形 MNGHf Rt ABC重叠部分的图形的面积为 S,当重叠部分的图形是正方形时,求出S关于t的函 数关系式并写出自变量 t的取值范围. 设正方形MNGH勺边NG所在直线与线段 AC交于点P,连接DP,当t为何值时, CPD是等腰三角形?试卷第#页,总8页试卷第#页,总8页试卷第#页,总8页参考答案答案第1页,总2页答案第#页,总2页1. ( 1) y=2x+8 , D (2, 2); (2)存在,2. ( 1) P (1, 2); (2) PE的解析式为:y=2x - 23. ( 1) MA=MN MAMN (2)成立,理由详见解析4. ( 1) 0E=0F证明详见解析;(2) OE=OF仍然成立,证明详见解析;5.(1) (2 苗,6). (2) mt2巴 6 (0 v t v 11). (3)(611空,6)或(11至,336).6.(3)125AP _4AC 一 5 n 107.(1)60 ; ( 2) 45,36. (3)1808.(1)证明见解析;(2)点B的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论