数值分析思考题答案_第1页
数值分析思考题答案_第2页
数值分析思考题答案_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数值分癖程思考题1. 叙述拉格朗日插值法的设计思想。Lagrange插值是把函数y=f (x)用代数多项式pn(x)代替,构造出一组n次差值 基函数;将待求得n次多项式插值函数pn(x)改写成另一种表示方式,再利用插值 条件确定其中的待定函数,从而求出插值多项式。2. 函数插值问题的提出以及插值法发展的脉络。问题的提出:实际问題中常遇到这样的函数y=f(x),其在某个区间a,b±是存在 的。但是,通过观察或测量或试验只能得到在a,b区间上有限个离散点 xO.xl.-.xn上的函数值尸f(xi),(i=O,n)或者f(x)函数表达式是已知的,但却 很复杂而不便于计算希望用一个简单的函数

2、描述它。发展脉络:在工程中用的多的是多项式插值和分段多项式插值。在多项式插值中, 首先谈到的是Lagrange插值,其成功地用构造插值基函数的方法解决了求n次多 项式插值函数的问題,但是其高次插值基函数计算复杂,且次数增加后,插值多项 式需要重新计算,所以在此基础上提出Newton插值,它是另一种构造插值多项式 的方法,与Lagrange插值相比,具有承袭性和易于变动节点的特点。如果对插值 函数,不仅要求他在节点处与函数同值,还要求它与函数有相同的一阶,二阶甚至 更高阶的导数值,这就提出了 Hermite插值,它是利用未知函数f(x)在插值节点上 的函数值及导数值来构造插值多项式的。为了提高精

3、度,加密节点时把节点分成若 干段,分段用低次多项式近似函数,由此提出了分段多项式插值。最后,由于许多 工程中对插值函数的光滑性有较高的要求,就产生了样条插值。3. 描述数值积分算法发展和完善的脉络。数值积分主要釆用插值多项式来代替函数构造插值型求积公式。通常采用 Lagrange插值。如果取等距节点,则得到Newton-Cotes公式,其中,当n=l时, 得到梯形公式;当n=2时,得到Simpson公式;当n=4时,得到Cotes公式。由于 高次Newton-Cotes公式的求积系数有正有负,将产生很大的计算误差,引起计算 不稳定,所以受分段插值的启发,对数值积分也采用分段求积,导出复化求积公

4、式; 其中,在小区间上用梯形公式求和的称为复化梯形公式,用Simpson公式求和的成 为复化Simpson公式,用Cotes公式求和的称为Cotes公式。但由于步长的选取是 个问题,所以,导出逐次分半法来计算。而由于有些函数在x=0的值无法求出,为 了求出很快收敛于f(0)的数列,就导出了 Richardson外推法,根据此思想,利用 变步长的复化梯形公式推导出Romberg积分法。后来,人们希望能选择求积节点, 确定求积系数,使代数精度有所提高,就得到Gauss型求积公式,常用的有 Gauss-Legendre求积公式(权函数为1 ) Gauss-Chebyshev求积公式(带权), Gau

5、ss-Laguerre 求积公式,Gauss-Hermite 求积公式(广义)。4.4. 什么是简单迭代法对某个非线性方程,构造一个迭代格式进行计算,发 现迭代不收敛,应该从哪些方面找原因。简单迭代法又称逐次迭代法,基本思想是构造不动点方程,以求得近似根。即 由方程f6)=0变换为x= (x),然后建立迭代格式:无=卩久)当给定处值血后,由迭代格式可求得数列“。如果&收敛于x,则它就是方 程的根。用直接的方法从原方程中隐含的求出X,从而确定迭代函数(X),这种迭 代法收敛速度较慢。应该看迭代函数的构造是否收敛,因为收敛性取决于迭代函数在根邻近的性 态,还有初值的选取是否合理,要尽疑接近

6、精确值。5. 什么是截断误差和舍入误差他们分别对应算法的哪种性质计算机只能完成有限次算术运算和逻辑运算,因此要将有些需用极限或无穷过 程进行的运算有限化,对无穷过程进行截断,这就带来误差;若将前若干项的部分和 作为函数值的近似公式,由于以后各项都舍弃了,自然产生了误差。在数值计算过程中还会遇到无穷小数,因计算机受到机器字长的限制,它所能表 示的数据只能有一定的有限位数,如按四舍五入规则取有限位数,由此引起的误差它们分别对应算法的近似性和有限性。6. 牛顿迭代在什么情况下能达到平方收敛。函数在其零点附近二阶连续可微,且其零点处的一阶导函数值不为零,则在其 零点的邻近是平方收敛的。7. 非线性方程

7、迭代法的收敛阶怎样定义怎样确定一个算法的收敛阶。收敛阶定义:设lim xk = x 记乞=| xk -x*|若存在实数p > 1和c > 0满足则称迭代刼阶收敛当P = 1时称为线性收敛p > 1时称为超线性收敛“ =2H寸称为平方收敛 确定一个算法的收敛阶:如果迭代法迭代函数0(X)在根x*附近满足:(1) 俠X)存在p阶导数均连续;(2) 0(%*)=矿(X*)=0 E)(x*) = 0,而0P)(x*) H 0则迭代法无+1 = 0(母)的收敛阶是P9.0.什么是解线性方程组的直接法。哪些方法属于这种类型,他们能完成的 条件是什么常用的解线性方程组的迭代法有哪些收敛条件

8、是什么描述 S0R算法的设计思想,该算法有哪些优点直接法:是指假设计算过程中不产生舍入误差,经过有限次运算可求得方程组 的精确解的方法。直接法:高斯消去法:要求主元素均不为零,当出现小主元素时会严重影响计 算结果的精度;列主元素法;全主元素法;直接三角分解法:矩阵需为方阵,其顺 序主子式均不为零;追赶法:严格对角占优的三对角矩阵,其非零元素集中分布在 主对角线及其相邻的两条次对角线上,称为三对角矩阵;平方根法:矩阵为对称正 定矩阵;改进的平方根法。迭代法:Jacobi迭代法;Gauss-Seidel迭代法;松弛法(低松弛和SOR法) 收敛条件:Jacobi迭代法收敛的充分必要条件是迭代矩阵谱半

9、径小于1.Gauss-Seidel迭代法收敛的充分必要条件是迭代矩阵的谱半径小于1 (谱半径小于 所有范数)Jacobi迭代法和Gauss-Seidel迭代法收敛的充分条件是系数矩阵为 严格对角占优o®Gauss-Seidel迭代法和SOR迭代法收敛的充分条件是系数矩阵为 对称正定矩阵。SOR:为了加速迭代过程的收敛,引入参数,在Gauss-Seidel迭代法的基础上 得到,将乘上参数因子作为修正项而得到的公式,可看成是Gauss-Seidel迭代法的加速。优点:收敛速度加快。11. 舍入误差扩散的一般规律总结四则运算以及开方、乘方运算误差扩 散规律。计算机参与运算的数据往往是近似数

10、,都带有误差。这些误差通过多次运算会 进行传播,使计算结果产生一定的误差,这称为误差传播问题。舍入误差传播与数 字取有效数字位数有关,有效数字位数越少,舍入误差越大。设y =为二元冈数x;zx;分别为 m的近似值,为相应的7的近似值 即y = /(x;,兀;)ex,勺分别为X:,兀;的绝对误差巧,勺分别为兀;z对的绝对误差限J,纟:2分别为%;,尤;的相对误差£;,£;2分别为X;, X;的相对误差限P4。12. 什么是常微分方程数值解求常微分方程数值解得一般思路。龙格一 库塔方法的设计思想。定义和一般思路P231; R-K方法的设计思想P237-23813. 实际中怎样控制迭代次数,其理论基础是什么非线性方程组得迭代:事前控制和事后控制。rk(1) 事前控制

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论