数学建模论文合理安排教学计划_第1页
数学建模论文合理安排教学计划_第2页
数学建模论文合理安排教学计划_第3页
数学建模论文合理安排教学计划_第4页
数学建模论文合理安排教学计划_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、摘 要合理的安排教学计划是教务运作中的一项重要工作,只有合理的利用现有师资等资源才能使得教学效率达到最高,使每位教师承担的教学量达到均衡,并且能在规定时间内完成学期任务,让同学在学习过程中不会因为课程连续上而感到厌倦。这是一个复杂的组合优化问题,在合理的假设下,根据实际情况在具体模型建立过程中对“教师-课程”组合采用0-1规划,“教师-班级”组合采用整数规划,然后结合各个约束条件,逐步建立模型并不断进行修改完善,并使用LINGO实现算法,得出教师与课程之间的合理对应关系。再对得到的数据进行整理,得出最合理的教学安排。关键词:教学计划 0-1规划 整数规划 LINGO正文一、 问题叙述在学校的教

2、务管理工作中,教学计划的安排是一项十分复杂、棘手的工作。它需要考虑时间、教师、课程、班级等因素,经过优化的安排,可以在任意一段时间内,教师不冲突,授课不冲突,授课的班级不冲突,且使每名教师承担的教学量达到均衡。某学校有42名教师,一学期开设了14门课程(每门课都有固定课时),本学期共有20周,总共238个班(详细见表1),由于教学任务过多等原因,在教学安排上,有些教师可能承担的教学量(即教学课时)较多,有些则较少,现在你的任务是,如何合理安排教学计划,力求使每名教师承担的教学量达到均衡。同时,还需满足一定条件:1.安排每名老师一周不能超过六次课(即12课时,每次课两课时);2.尽可能地安排在周

3、一至周五,每天8节课(即四课时);3.每名教师授课班级不超过8个,每名教师承担课不超过两门;4.由于身体等原因,教师尽量不要每天连续授课。表1本学期该校的教学任务课程名称课时授课班级总数A10438B10451C8817D485E481F721G641H641I482J1081K481L482M641N48116二、 模型假设1. 假设每名教师每门课都能教,不考虑教师的个别特殊情况;2. 假设学校教室资源足够,不考虑教室资源对教学计划安排的约束;3. 不考虑节日等因素对教学计划安排的影响;4. 假设留出最后两周给学生准备期末考试,不安排课程。三、 符号说明1表示第i个教师上第j门课程,0表示第

4、i个教师不上第j门课程;:第i个教师教授第k个班级;:第j门课程的每周上课次数;:第j门课程的课时数;:第j门课程的上课班级数。四、 模型分析和建立1.课时数的安排:由于考虑到要给同学期末复习时间,所以只安排前18周的课。结合表格的数据,对每门课做一个笼统的分析,以课程A为例,总课时为104及52次课,安排1到17周,每周3次,18周一次,刚好能完成课时。以此类推,每门课的周上课次数安排如下(其中1.5表示分单双周,是一个平均值)。课程A每周3次课课程B每周3次课课程C每周2.5次课课程D每周1.5次课课程E每周1.5次课课程F每周2次课课程G每周2次课课程H每周2次课课程I每周1.5次课课程

5、J每周3次课课程K每周1.5次课课程L每周1.5次课课程M每周2次课课程N每周1.5次课模型的约束条件:2.使每名教师承担的教学量达到均衡,得出目标函数:3.每名老师一周不能超过六次课(即12课时,每次课两课时),得出约束条件:,i=1,,42 4.考虑到每名教师承担课不超过两门,得出约束条件:, i=1,,425.使每名教师授课班级不超过8个,对于授课班级总数少于8的课程不需考虑,以授课班级总数为38的课程A为例,38/8=4.75,所以最少需要5个教师教授这门课程,以此类推,B门课程至少需要7个教师,C门课程至少需要3个教师,N门课程至少需要15个教师。得出以下4个约束条件: 目标性条件:

6、在排课时满足假设的条件下,衡量排课是否为非劣的目标条件是力求每名教师承担的教学量达到均衡。即:使每个教师实际安排的课时与本学期的教学计划的平均课时的方差f达到最小。目标性条件是以发生的次数为赋权,其权数的大小可以衡量该目标的适应程度。并把权定义为适应性函数。每个目标性条件都是一个目标函数,排课的目标就是寻找使目标条件同时达到最优的可行解。因此排课问题是以确定性条件为约束条件、目标性条件为目标函数的一种多目标函数优化问题。值得注意的是,不能简单地用“加权取和”构造目标函数求极值这主要原因是:决策变量是离散的变量,“加权取和”的目标函数可能得不到可行解。着重讨论该模型的建立和算法的实现。五、 模型

7、求解目标函数及约束条件:LINGO运行结果截图:结论:我们根据编程结果得到教师与课程的对应关系,然后再根据每位教师承担的教学量达到均衡的原则,平均分配238个授课班级,有28个教师教授6个班级,14个教师教授5个班级。如下表所示:第i个教师所教课程名及班级数教师序号教授课程名称教授班级数1A62D53N64N65LN246N67N68AG519B610B611A612BF5113N614BI4215AE5116A517N518N519N520N521B622B623N524C625MN1426AK5127B628A629N530N531N532C533BJ5134N635C636N637N63

8、8N639N640BH5141N542BN23六、 模型的评价和改进模型的评价:本文采用目标规划的方法,从教师角度出发,充分考虑了课程、教师、班级、课时之间的相互约束,用0-1规划确定出“教师-课程”组合,用线性规划确定“教师-课程-课时”、“教师-班级”组合,建立了一个满足课程、教师、班级、课时的各种属性及要求的模型,逐步优化,层层递进,思路清晰,简单易懂,让教师能在不影响自身身体状况的情况下教育学生,效率提高。模型的改进:由于模型的局限性,没有考虑到尽可能地安排在周一至周五,每天8节课(即四课时),改进的约束条件为:七、 附录(附上计算机程序等)model:sets: teacher/1.

9、42/: ; course/1.14/: t,c; class/1.238/:; rela(teacher,class):z; links(teacher,course): x;endsetsmin=(sum(teacher(i):(sum(course(j): x(i,j)*c(j)-(sum(course(j): c(j)/42)2); for(links(i,j):bin(x);for(rela(i,k):gin(z); for(teacher(i): sum(course(j): x(i,j)*t(j)<=6); for(teacher(i): sum(course(j): x(

10、i,j)<=2; sum(course(j): x(i,j)>=1);for(teacher(i): sum(class(k): z(i,k)<=8); sum(teacher(i): x(i,1)>=5; sum(teacher(i): x(i,2)>=7; sum(teacher(i): x(i,3)>=3; sum(teacher(i): x(i,14)>=15;sum(teacher(i): x(i,4)>=1;sum(teacher(i): x(i,5)=1;sum(teacher(i): x(i,6)=1;sum(teacher(i)

11、: x(i,7)=1;sum(teacher(i): x(i,8)=1;sum(teacher(i): x(i,9)>=1;sum(teacher(i): x(i,10)=1;sum(teacher(i): x(i,11)=1;sum(teacher(i): x(i,12)>=1;sum(teacher(i): x(i,13)=1;total = sum(course:c);data: t=3 3 2.5 1.5 1.5 2 2 2 1.5 3 1.5 1.5 2 1.5; c=104 104 88 48 48 72 64 64 48 108 48 48 64 48;enddataend参考文献1姜启源.数学模型(第三版)M

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论