




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第十四章 整式的乘法与因式分解数学组 叶 昊第1课时14.1.1 同底数幂的乘法教学目标:1知识与技能:在推理判断中得出同底数幂乘法的运算法则,并掌握“法则”的应用 2过程与方法:经历自主探索同底数幂的乘法、幂的乘方和积的乘方等运算性质的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力 3情感态度与价值观:在小组合作交流中,培养协作精神、探究精神,增强学习信心教学重点:同底数幂乘法运算性质的推导和应用教学难点:同底数幂的乘法的法则的应用教学过程; 一、创设情境,引入新课 “盘古开天壁地”的故事:公元前一百万年,没有天没有地,整个宇宙是混浊的一团,突然间窜出来一个巨人,他的名字叫盘古,他
2、手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流 请问:盘古的左眼变成了太阳,那么,太阳离我们多远呢?你可以计算一下,太阳到地球的距离是多少?光的速度为3×105千米/秒,太阳光照射到地球大约需要5×102秒,你能计算出地球距离太阳大约有多远呢?可以列出算式:3×105×5×102=15×105×102=15×?(引入课题)二、新
3、课讲解问题:一种电子计算机每秒可以进行1012次运算,它工作103s可以进行多少次运算?你能用学过的知识解决吗?它工作103s可以进行的运算次数是1012×103怎样计算1012×103?根据乘方的意义可以知道: 1请同学们计算并探索规律 (1)23×24=(2×2×2)×(2×2×2×2)=2( ); (2)53×54=_=5( ); (3)(3)7×(3)6=_=(3)( ); (4)()3×()=_=()( ); (5)a3·a4=_a( ) 提出问题:这几道
4、题目有什么共同特点? 请同学们看一看自己的计算结果,想一想,这些结果有什么规律?【学生活动】独立完成,并在黑板上演算一般地,对于任意底数a与任意正整数m,n,am ·an=(a·a ·a)·(a·a··a)=a·a··a=am+n因此,我们有am ·an= =am+n(m,n都是正整)即 同底数的幂相乘,底数不变,指数相加。 三、例题讲解例1 (课本P96例1)计算:(1)x2 ·x5 (2)a·a6 (3)(-2)×(-2)4×(-2)3 (4
5、) xm ·x3m + 1解:(1) x2 ·x5 =x2+5=x7(2) a·a6 =a1+6=a7 (3)(-2)×(-2)4×(-2)3 =(-2)1+4+3=(-2)8=256(4) xm ·x3m + 1=xm+3m+1=x4m+1例2、计算: (1)103×104; (2)a·a3; (3)a·a3·a5; (4)x·x2+x2·x解:(1)103×104=103+4=107 (2)a·a3=a1+3=a4(3)a·a3·a
6、5=a1+3+5=a9 (4)x·x2+x2·x=x1+2+x2+1=x3+x3=2x3四、随堂练习 课本第96页练习题五、课堂小结 1同底数幂的乘法,使用范围是两个幂的底数相同,且是相乘关系,使用方法:乘积中,幂的底数不变,指数相加注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加,即am·an=am+n(m、n是正整数)2应用时可以拓展,例如含有三个或三个以上的同底数幂相乘,仍成立, 3运用幂的乘法运算性质注意不能与整式的加减混淆 六、布置作业 第2课时14.1.2 幂的乘方教学目标: 1知识与技能:理解幂的乘方
7、的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质 2过程与方法:经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学,培养学生应用能力3情感态度与价值观:培养学生合作交流的意义和探索精神,体会数学的应用价值教学重点: 幂的乘方法则教学难点:幂的乘方法则的推导过程及灵活应用教学准备:彩色粉笔、小黑板教学过程: 一、创设情境,导入新课(出示小黑板)大家知道太阳,木星和月亮的体积的大致比例吗?我可以告诉你,木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么,请同学们计算一下太阳和木星的体积是多少?(球的
8、体积公式为V=r3)解:设地球的半径为1,则木星的半径就是102,因此,木星的体积为V木星=·(102)3=?(引入课题) 二、新课讲解 【教师引导】(102)3=?利用幂的意义来推导 【教师启发】请同学们思考一下a3代表什么?(102)3呢? a3=a×a×a,指3个a相乘(102)3=102×102×102,就变成了同底数幂乘法运算,根据同底数幂乘法运算法则,底数不变,指数相加,102×102×102=102+2+2=106,因此(102)3=106 利用刚才的推导方法推导下面几个题目: (1)(32)3= 32
9、15; 32 × 32 = 3 (2)(a2)3 = a2·a2·a2 = a (3)(am)3 = am·am ·am = a 归纳总结并进行小组讨论,最后得出结论: (am)n= amn(m,n都是正整数) 即:幂的乘方,底数不变,指数相乘 三、例题讲解 例 (课本P96例2)计算: (1)(103)5; (2)(b3)4; (3)(xm)3; (4)(x4)3 解:(1)(103)5=103×5=1015; (3)(xm)3=xm×3=x3m; (2)(b4)4=b4×4=b16; (4)(x4)3=x4
10、215;3=x12 四、课堂练习 课本P97练习 提高练习: 若(x2)m=x8,则m=_ 若(x3)m2=x12,则m=_ 若xm·x2m=2,求x9m的值。 若a2n=3,求(a3n)4的值。 五、课堂小结 幂的乘方(am)n=amn(m,n都是正整数)使用范围:幂的乘方方法:底数不变,指数相乘这里的底数、指数可以是数,可以是字母,也可以是单项式或多项式幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”,一个是“指数相加”六、布置作业: 第3课时14.1.3 积的乘方教学目标: 1知识与技能:通过探索积的乘方的运算性质,进一步体会和巩固幂的意义,在推理得出积的乘方的运算
11、性质的过程中,领会这个性质 2过程与方法:经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力3情感态度与价值观:通过小组合作与交流,培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心教学重点: 积的乘方的运算教学难点: 积的乘方的推导过程的理解和灵活运用教学过程 一、创设情境、引入新课 问题:已知一个正方体的棱长为2×103cm,你能计算出它的体积是多少吗? 体积应是V=(2×103)3cm3 ,结果是幂的乘方形式吗?底数是2和103的乘积,虽然103是幂,但总体来看,它是积的乘方。积的乘方如何运算呢?能不能找到一个
12、运算法则?引入课题 二、新课讲解 1填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律? (1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a( )b( ) (2)(ab)3=_=_=a( )b( )(3)(ab)n=_=_=a( )b( )(n是正整数) 2分析过程:(1)(ab)2 =(ab)·(ab)= (a·a)·(b·b)= a2b2, (2)(ab)3=(ab)·(ab)·(ab)=(a·a·a)·(b·b·b)
13、=a3b3; (3)(ab)n=·=anbn 3得到结论: 积的乘方:(ab)n=an·bn(n是正整数) 即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。 三、例题讲解 例 (课本P97例3)计算: (1)(2a)3 (2)(-5b)3 (3)(xy2)2 (4)(-2x3)4 解:(1)(2a)3=23a3=8a3 (2)(-5b)3 =(-5)3b3= -125b3 (3)(xy2)2 =x2(y2)2=x2y4 (4)(-2x3)4=(-2)4(x3)4=16x12 四、课堂练习 课本P99练习1、2题 五、课堂小结 本节课注重课堂引入,激发学生兴趣,“
14、良好开端等于成功一半” 1积的乘方(ab)n=anbn(n是正整数),使用范围:底数是积的乘方方法:把积的每一个因式分别乘方,再把所得的幂相乘 2在运用幂的运算法则时,注意知识拓展,底数和指数可以是数,也可以是整式,对三个以上因式的积也适用 六、布置作业第4课时14.1.4 整式的乘法(单项式乘以单项式)教学目标: 1知识与技能:理解整式运算的法则,会进行简单的整式乘法运算 2过程与方法:经历探索单项式乘以单项式的过程,体会乘法结合律的作用和转化的思想,发展有条理的思考及语言表达能力 3情感态度与价值观:培养学生推理能力、计算能力,通过小组合作与交流,增强协作精神教学重点: 单项式乘法运算法则
15、的推导与应用教学难点: 单项式乘法运算法则的推导与应用教学过程 一、创设情境,引入新课 1、知识回顾:回忆幂的运算性质: am·an=am+n (am)n=amn (ab)n=anbn (m,n都是正整数) 2、问题:光的速度约为3×105千米/秒,太阳光照射到地球上需要的时间约是5×102秒,你知道地球与太阳的距离约是多少千米吗? 分析解决:(3×105)×(5×102)=(3×5)×(105×102)=15×107 问题的推广:如果将上式中的数字改为字母,即ac5·bc2,如何计算
16、?从而引入课题二、新课讲解: ac5·bc2是单项式ac5与bc2相乘,我们可以利用乘法交换律、集合律及同底数幂的运算性质来计算: ac5·bc2=(a·c5)·(b·c2)=(a·b)·(c5·c2)=abc5+2 =abc7 类似地,请你试着计算:(1)2c5·5c2;(2)(-5a2b3)·(-4b2c) 得出结论:单项式与单项式相乘:把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式 三、例题讲解 例1 计算(1)3x2y·(2xy3
17、) (2)(5a2b3)·(4b2c)解:(1)3x2y·(2xy3)=3×(-2)(x2·x)(y·y3)=-6x3y4 (2)(5a2b3)·(4b2c)=(-5)×(-4)·a2·(b3·b2)·c=20a2b5c例2 (课本P98例4) 计算 (1)(5a2b)(3a); (2)(2x)3(5xy2)解:(1)(5a2b)(3a)=(-5)×(-3)(a2·a)·b=15a3b; (2)(2x)3(5xy2)=23x3(-5xy2)=8×
18、(-5)(x3·x)·y2=-40x4y2 四、课堂练习 课本P99练习第1、2题五、课堂小结 本节内容是单项式乘以单项式,重点是放在对运算法则的理解和应用上 提问:(1)请同学们归纳出单项式乘以单项式的运算法则 (2)在应用单项式乘以单项式运算法则时应注意些什么? 六、布置作业第5课时14.1.4 整式的乘法(单项式与多项式相乘)教学目标: 1知识与技能:让学生通过适当尝试,获得一些直接的经验,体验单项式与多项式的乘法运算法则,会进行简单的整式乘法运算 2过程与方法:经历探索单项式与多项式相乘的运算过程,体会乘法分配律的作用和转化思想,发展有条理地思考及语言表达能力 3情
19、感态度与价值观: 培养良好的探究意识与合作交流的能力,体会整式运算的应用价值教学重点: 单项式与多项式相乘的法则教学难点: 整式乘法法则的推导与应用教学过程; 一、创设情境,引入新课 1口述单项式乘以单项式法则 2、小明作了一幅水彩画,所用纸的大小如图1,她在纸的左右两边各留了a米的空白,请同学们列出这幅画的画面面积是多少? 在学生讨论的基础上,提问个别学生,从而引入课题 图1二、新课讲解夏天将要来临,有3家超市以相同价格n(单位:元台)销售A牌空调,他们在一年内的销售量(单位:台)分别是x,y,z,请你采用不同的方法计算他们在这一年内销售这种空调的总收入 方法一:首先计算出这三家超市销售A牌
20、空调的总量(单位:台),再计算出总的收入(单位:元)即:n(x+y+z) 方法二:采用分别计算出三家超市销售A牌空调的收入,然后再计算出他们的总收入(单位:元) 即:nx+ny+nz 由此可得:n(x+y+z)=nx+ny+nz 归纳总结:单项式与多项式相乘,就是用单项式去乘多项式中的每一项,再把所得的积相加三、例题讲解 例1 计算:(2a2)·(3ab25ab3) 解:原式(2a2)(3ab2)(2a2)·(5ab3) =6a3b2+10a3b3 例2 化简:3x2·(xyy2)10x·(x2yxy2) 解:原式=x3y+3x2y210x3y+10x2
21、y2 =11x3y+13x2y2例3 (课本P100例5)计算: (1)(4x2)(3x+1); (2) 解:(1)(4x2)(3x+1)=(4x2)·3x+(4x2)×1=12x34x2; (2) =ab2·ab-2ab·ab=a2b3-a2b2 四、课堂练习:课本P100练习第1、2题 五、课堂小结 1单项式与多项式相乘法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加 2单项式与多项式相乘,应注意(1)“不漏乘”;(2)注意“符号” 六、布置作业:第6课时14.1.4 整式的乘法(多项式与多项式相乘)教学目标: 1知识与技能
22、:让学生理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算 2过程与方法:经历探索多项式与多项式相乘的运算法则的推理过程,体会其运算的算理 3情感态度与价值观:通过推理,培养学生计算能力,发展有条理的思考,逐步形成主动探索的习惯教学重点: 多项式与多项式的乘法法则的理解及应用教学难点: 多项式与多项式的乘法法则的应用教学过程: 一、创设情境,引入新课如图,根据图中的数据,求这个矩形的面积 计算出它的面积为:(m+b)×(n+a),这个式子怎么计算呢?从而引入课题mnabaa二、新课讲解问题:如图,为了扩大街心花园的绿地面积,把一块原长a米、宽m米的长方形绿地,增长
23、了b米,加宽了n米你能用几种方法求出扩大后的绿地面积?一种计算方法是先分别求出四个长方形的面积,再求它们的和,即(am+an+bm+bn)米2另一种计算方法是先计算大长方形的长和宽,然后利用长乘以宽得出大长方形的面积,即(a +b)(mn)米2由于上述两种计算结果表示的是同一个量,因此(a +b)(mn)= am+an+bm+bn教师根据学生讨论情况适当提醒和启发,然后对讨论结果(a +b)(mn)=am+an+bm+bn进行分析,可以把mn看做一个整体,运用单项式与多项式相乘的法则,得 (a +b)(mn)a(mn)b(mn),再利用单项式与多项式相乘的法则,得a(mn)b(mn)= am+
24、an+bm+bn归纳:多项式与多项式相乘,就是先用一个多项式中的每一项去乘另一个多项式的每一项,再把所得的积相加 三、例题讲解 例 (课本P101例6)计算: (1)( 3x+1)(x+2) ; (2) (x 8y)(xy) ; (3) (x+y)(x2xy+y2)解:(1)(3x+1)(x+2) =3x(x+2)+1·(x+2) =3x·x+3x·2+1·x+1×2 =3x2+6x+x+6=3x2+7x+6 (2) (x 8y)(xy) =x(x-y)-8y(xy)=x2-xy-8xy+y2 =x2-9xy+y2 (3) (x+y)(x2xy
25、+y2)=x(x2xy+y2)+y(x2xy+y2)=x3-x2y+xy2+x2y-xy2+y3=x3+y3进行运算时应注意:不漏不重,符号问题,合并同类项四、课堂练习 课本P102练习第1、2题五、课堂小结 多项式与多项式相乘,第一步要先进行整理,在用一个多项式的每一项去乘另一个多项式的每一项时,要“依次”进行,不重复,不遗漏,且各个多项式中的项不能自乘,多项式是几个单项式的和,每一项都包括前面的符号,在计算时要正确确定积中各项的符号六、布置作业 第7课时14.1.4 整式的乘法(同底数幂的除法) 教学目标: 1知识与技能:了解同底数幂的除法的运算性质,并会用其解决实际问题 2过程与方法:经
26、历探究同底数幂的除法的运算性质的过程,进一步体会幂的意义,发展推理能力和有条件的表达能力 3情感态度与价值观:感受数学法则、公式的简洁美、和谐美教学重点: 同底数幂的除法法则教学难点: 同底数幂的除法法则的推导教学过程: 一、创设情境,引入新课1 问题:一种数码照片的文件大小是28K,一个存储量为26M(1M=210K)的移动存储器能存储多少张这样的数码照片?2.分析问题:移动器的存储量单位与文件大小的单位不一致,所以要先统一单位移动 存储器的容量为26×210=216K所以它能存储这种数码照片的数量为216÷283.问题迁移:由同底数幂相乘可得:,所以根据除法的意义216
27、÷28 =284感知新知:这就是我们本节需要研究的内容:同底数幂的除法 二、新课讲解1、根据除法的意义填空,并探索其规律(1)5 5÷5 35( )(2)107÷10510( )(3)a6÷a3a( )推导公式:a m ÷a n a m n(a0,m、n为正整数,且mn)归纳:同底数的幂相除,底数不变,指数相减。2、比较公式a m·anam + n (am)n am n (ab)m a m bm am ÷an am - n 比较其异同,强调其适用条件三、例题讲解例 1 (课本P103例7)计算:(1)x8÷x2 (
28、2)(ab)5÷(ab)2 解:(1)x8÷x2 =x8-2=x6 (2)(ab)5÷(ab)2=(ab)5-2=(ab)3=a3b3 例 2 计算: 32÷32 103÷103 am÷am(a0) 解: 32÷32=32-2=30 103÷103=103-3=100 am÷am=am-m=a0(a0) 由除法可得:32÷32=1 103÷103=1 am÷am=1(a0) 于是规定:a0=1(a0) 即:任何不等于0的数的0次幂都等于1四、课堂练习 1、课本P104练习第1
29、题 2、补充练习 计算: 五、课堂小结: 利用除法的意义及乘、除互逆的运算,揭示了同底数幂的除法的运算规律,并能运用运算法则解决简单的计算问题六、布置作业第8课时14.1.4 整式的乘法(单项式除以单项式)教学目标: 1知识与技能:会进行单项式除以单项式运算,理解整式除法运算的算理,发展有条理的思考及语言表达能力 2过程与方法:经历整式乘法的逆运算或约分的思想推理出单项式除以单项式的运算法则的过程,掌握整式除法运算 3情感态度与价值观:培养学生探索的勇气和信念,增强挑战困难的勇气和信心教学重点: 单项式除以单项式的运算法则教学难点:理解单项式除以单项式的法则并应用其法则计算教学过程: 一、创设
30、情境,导入新课 问题提出:林宁今年刚刚3岁,是幼儿园里最聪明的孩子,李老师教他做算术,告诉他5×6=30后,他马就知道30÷5=6,你说他是怎样计算的呢?林宁利用了除法是乘法的逆运算得出的结果我们前几天学习了整式的乘法,现在,不用老师讲解,你们能开始解决整式的除法运算吗?谁可以告诉我单项式与单项式相除的法则?引入课题。 二、新课讲解讨论如何计算:(1)8a3÷2a (2)6x3y÷3xy (3)12a3b3x3÷3ab2 注:8a3÷2a就是(8a3)÷(2a)由学生完成上面练习,并得出单项式除单项式法则。单项式除以单项式法
31、则:单项式相除,把系数与同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。三、例题讲解例1:计算 (1)28x4y2÷7x3y (2)5a5b3c÷15a4b 解:(1)28x4y2÷7x3y =(28÷7)·x4-3 ·y2-1=4xy (2)5a5b3c÷15a4b=(-5÷15)a5-4b3-1c=-ab2c4、 课堂练习: 课本P104 练习第 2题五、课堂小结 单项式除以单项式运算时,要注意: 1系数相除与同底数的幂相除的区别:后者运算时是将指数相减,然而前者是有
32、理数的除法 2对于单项式除以单项式,仅仅考虑整除的情况 六、布置作业 课本P104习题141第6题(1)(2)(3)第9课时14.1.4 整式的乘法(多项式除以单项式)教学目标: 1知识与技能:要求学生能够进行多项式除以单项式的运算,并且理解除法运算的算理,发展思维能力和表达能力 2过程与方法:利用整式除法的逆运算或者约分的方法推理出多项式除以单项式的运算法则,掌握整式除法的运算 3情感态度与价值观:通过分组讨论学习,体会在解决具体问题的过程中与他人合作的重要性,培养学生的团结协作精神,使学生获得合作交流的学习方式教学重点: 多项式除以单项式的运算法则的推导,以及法则的正确使用教学难点: 多项
33、式除以单项式的运算法则的熟练应用教学过程: 一、创设情境,导入新课 课堂演练1(4a2b)2÷(2ab2) 216(x3y4)3÷(x4y5)2; 提问 “(6xy+8y)÷(2y)”如何计算?由此引出课题。 二、新课讲解计算:(ambm)÷m,并说明计算的依据(ab)m = ambm (ambm)÷m=ab 又am÷mbm÷mab 故(ambm)÷mam÷mbm÷m用语言描述上式,得到多项式除以单项式法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。 三、例题讲解
34、例 计算:(1)(18x44x22x)÷2x (2)(35x4y314x3y27x2y2)÷(7x2y) 解:(1)(18x44x22x)÷2x =18x4÷2x4x2÷2x2x÷2x =9x3-2x-1 (2)(35x4y314x3y27x2y2)÷(7x2y) =35x4y3÷(7x2y)14x3y2÷(7x2y)7x2y2÷(7x2y) =-5x2y2+2xy+y四、课堂练习 课本P104 练习第 3题 五、课堂小结1.多项式除以单项式时应注意运算中的问题:一是所除的商要写成省略括号的代数
35、和,二是除式与被除式不能交换,还要注意运算顺序,应灵活地运用有关运算公式2应用单项式除法法则应注意:系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面 的符号;把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式 中某一字母的指数不小于除式中同一字母的指数;被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺 序进行多项式除以单项式法则六、布置作业第10课时14.2.1平方差公式教学目标: 1知识与技能:会推导平方差公式,并且懂得运用平方差公式进行简单计算 2过程与方法:
36、经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式 3情感态度与价值观:通过合作学习,体会在解决具体问题过程中与他人合作的重合性,体验数学活动充满着探索性和创造性教学重点: 平方差公式的推导和运用教学难点: 平方差公式的应用教学过程: 一、创设情境,导入新课 1、多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加 2、计算下列多项式的积(1)(x+1)(x-1)(2)(m+2)(m-2)(3)(2x+1)(2x-1)(4)(x+5y)(x-5y)提出问题:观察上述算式,你发现什么规律?运算出结果后,
37、你又发现什么规律?从而引出课题。2、 新课讲解1、观察:(1)(x+1)(x-1)=x2-1 (2)(m+2)(m-2)=m2-4 (3)(2x+1)(2x-1)=4x2-1 (4)(x+5y)(x-5y)=x2-25y2特点:等号的左边:两个数的和与差的积,等号的右边:是这两个数的平方差 2、再试一试: (学生自己出相似的题目加以验证) 3、得到平方差公式:两数的和与这两数的差的积,等于这两个数的平方差 即 (a+b)(a-b)=a2-b2 三、例题讲解 例1下列哪些多项式相乘可以用平方差公式? 认清公式:在等号左边的两个括号内分别没有符号变化的集团是a,变号的是b 例2: 运用平方差公式计
38、算 (1)(3x+2)(3x-2) (2)(-x+2y)(-x-2y) 解:(1)(3x+2)(3x-2)=(3x)2-22 = 9x2-4 (2)(-x+2y)(-x-2y)= (-x)2-(2y)2 = x2 -4y2 例3 计算: (1)(y+2)(y-2)-(y-1)(y+5) (2)102×98 解:(1)(y+2)(y-2)-(y-1)(y+5)=y2-22-(yy+4y-5)=y2-4-y2-4y+5=-4y+1 (2)102×98 =(100+2)(100-2)=1002-22=10000-4=9996 四、课堂练习: 课本P108 练习1,2 五、课堂小结
39、 本节课的内容是两数和与这两数差的积,公式指出了具有特殊关系的两个二项式积的性质运用平方差公式应满足两点:一是找出公式中的第一个数a,第二个数b;二是两数和乘以这两数差,这也是判断能否运用平方差公式的方法六、布置作业 第11课时14.2.2 完全平方公式(1)教学目标: 1知识与技能:会推导完全平方公式,并能运用公式进行简单的运算,形成推理能力 2过程与方法:利用多项式与多项式的乘法以及幂的意义,推导出完全平方公式掌握完全平方公式的计算方法 3情感态度与价值观:培养学生观察、类比、发现的能力,体验数学活动充满着探索性和创造性教学重点: 完全平方公式的推导和应用教学难点: 完全平方公式的应用教学
40、过程: 一、创设情境,导入新课 请同学们完成下面的几道题: (1)(2x3)2; (2)(x+y)2; (3)(m+2n)2; (4)(2x4)2 解:(1)(2x3)2=4x212x+9; (2)(x+y)2=x2+2xy+y2; (3)(m+2n)2=m2+4mn+4n2; (4)(2x4)2=4x216x+16 组织学生通过上面的运算结果中的每一项,观察、猜测它们的共同特点从而引出课题 二、新课讲解讨论观察,探讨,发现规律如下:(1)右边第一项是左边第一项的平方,右边最后一项是左边第二项的平方,中间一项是它们两个乘积的2倍(2)左边如果为“+”号,右边全是“+”号,左边如果为“”号,它们
41、两个乘积的2倍就为“”号,其余都为“”号 那我们就利用简单的(a+b)2与(ab)2进行验证,请同学们利用多项式乘法以及幂的意义进行计算 计算出(a+b)2=a2+2ab+b2;(ab)2=a22ab+b2,完成后,一位学生上讲台板演 利用学生的板演内容,归纳:完全平方公式:(a+b)2=a2+2ab+b2;(ab)2=a22ab+b2即两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍三、例题讲解例1 (课本P110例3)运用完全平方公式计算: (1) (4m+ n)2 ; (2) (y)2 解:(1) (4m+ n)2 =(4m)2+24mn+n2 =16m2+8mn+n2; (2) (y)2 = y2-2y+()2 = y2-y+ 例2 (课本P110例4)运用完全平方公式计算: (1)1022 (2)992 解:(1)1022 =(100+2)2 =1002+21002+22 =10000
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025工程承包合同范本3
- 广西壮族自治区2024~2025学年 高二下册开学考试数学试卷附解析
- 广东省佛山市2024~2025学年 高二下册3月月考数学试卷附解析
- 福建省三明市2023−2024学年高二下册期末质量检测数学试卷附解析
- 北京市2024-2025学年高三下册3月月考数学试卷
- 冀教版4年级下册数学全册课件(2025年3月修订)
- 社区社区服务设施更新改造管理基础知识点归纳
- 公司员工上岗资格证模板
- 2025年中华文明理论试题
- 公共营养师培训考试辅导:三级公共营养师模拟试题(基础理论)及答案
- 工厂计件奖罚管理制度
- 江苏省南京2022年中考历史试卷(解析版)
- 《老年人认知记忆训练》课件
- 2024年广东省中考生物+地理试卷(含答案)
- DL-T5796-2019水电工程边坡安全监测技术规范
- 上海地理会考复习
- 北京万集DCS30KⅡ计重收费系统技术方案
- 设施设备检查记录表
- 油漆安全技术说明书msds
- 小学数学一年级《求一个数比另一个数多几、少几》说课稿
- 外资星级酒店客房清洁卫生细节量化检查表
评论
0/150
提交评论