第一章直角三角形的边角关系复习_第1页
第一章直角三角形的边角关系复习_第2页
第一章直角三角形的边角关系复习_第3页
第一章直角三角形的边角关系复习_第4页
第一章直角三角形的边角关系复习_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、课时课题:第一章 直角三角形的边角关系复习执教者: 课型:复习课授课时间:2012年12月11日 星期二 第 2节课教学目标:1理解锐角三角函数的概念;2会计算含30°,45°,60°角的三角函数值的问题.3能够运用三角函数解直角三角形,并解决与直角三角形有关的实际问题.4. 体会数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题.教学重点与难点:重点:能够运用三角函数解直角三角形,并解决与直角三角形有关的实际问题难点:利用数形结合的思想分析问题和解决问题.教法及学法指导:小组交流互动课前准备:多媒体课件教学过程: 一考点解析考点一锐角三角函数的概念 B

2、AC如图,在ABC中,C=90° (1)锐角A的对边与斜边的比叫做A的正弦,记为sinA,即(2)锐角A的邻边与斜边的比叫做A的余弦,记为cosA,即(3)锐角A的对边与邻边的比叫做A的正切,记为tanA,即例1:(2012连云港,)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出67.5°的角的正切值是 ( ) A.+1 B. +1 C. 2.5 D.【解析】注意折叠后两点对称,也就是说ABE和AEF都是等腰三角形。得到67.5°的角

3、为FAB。【答案】设AB=x,则BE=x,在直角三角形ABE中,用勾股定理求出AE=EF=x,于是BF=(+1)x.在直角三角形ABF中,tanFAB=+1=tan67.5°.选B。【点评】根据折叠得到A、E关于折痕对称,从而根据轴对称的性质得到等腰三角形。求出两线段的长。考点二特殊角的三角函数值根据正弦、余弦和正切的定义,可以得到如下几个常用的特殊角的正弦、余弦和正切值。例2:(2012,湖北孝感)计算:cos245°+tan30°·sin60°=_【解析】分别把cos45°=的值,tan30°=的值,sin60°

4、;=的值代入进行计算即可答案=1。【点评】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主牢记特殊角的三角函数值是解题的关键例3:(2011甘肃兰州)已知是锐角,且sin(+15°)=,计算的值。【答案】由sin(+15°)=得=45°,原式=考点三解直角三角形(重点)在直角三角形中,除直角的五个量中,若已知其中的两个量(其中至少有一条边),就可以求出另外三个未知量。在RtABC中,C=90°,A、B、C所对的边分别为 。(1)三边之间关系: (2)锐角之间关系:A+B=90°(3)边角之间关系:,

5、 , (4)面积公式: (5)同角的三角函数的关系:sinA2cosA21 ; tanA CBA图2D(6)互为余角的函数之间的关系 sin(90°A)cosA, cos(90°A)sinA, tanA .tan(90°A)1例4:(2012四川内江)如图1所示,ABC的顶点是正方形网格的格点,则sinA的值为( )AB C D【解析】欲求sinA,需先寻找A所在的直角三角形,而图形中A所在的ABC并不是直角三角形,所以需要作高观察格点图形发现连接CD(如下图2所示),恰好可证得CDAB,于是有sinA例5:(2011湖北荆州,8,3分)在ABC中,A120

6、76;,AB4,AC2,则的值是( )ABCDABDC42【解析】如图,作,延长BA,过点C作BA的垂线, 交BA的延长线于点D, ,,,答案选D.例6: (2012重庆,20,6分)已知:如图,在RtABC中,BAC=90°,点D在BC边上,且ABD是等边三角形。若AB=2,求ABC的周长。(结果保留根号)【解析】由ABC是直角三角形和ABD是等边三角形,可求出C=30°,利用三角函数可求出答案。【答案】ABD是等边三角形B=60°BAC=90°C=30°sinC=BC=4, cosC= AC=BC·cosC=2 ABC的周长是6+

7、2考点四.利用锐角三角函数解决实际应用解直角三角形,可将某些实际问题中的数量关系归结为直角三角形中的元素(边、角)之间的关系.一般有以下几个步骤:1.审题:认真分析题意,根据题目中的已知条件,画出它的平面图,弄清已知和未知;2.明确题目中的一些名词、术语的汉语,如仰角、俯角、跨度、坡角、坡度及方向角;3.是直角三角形的,根据边角关系进行计算;若不是直角三角形,应大胆尝试添加辅助线,把它们分割成一些直角三角形和矩形,把实际问题转化为直角三角形进行解决;4.确定合适的边角关系,细心推理计算。例7:(2012山西)如图,为了开发利用海洋资源,某勘测飞机预测量一岛屿两端AB的距离,飞机在距海平面垂直高

8、度为100米的点C处测得端点A的俯角为60°,然后沿着平行于AB的方向水平飞行了500米,在点D测得端点B的俯角为45°,求岛屿两端AB的距离(结果精确到0.1米,参考数据:)解:如下图,过点A作AECD于点E,过点B作BFCD于点F,ABCD,AEF=EFB=ABF=90°,四边形ABFE为矩形AB=EF,AE=BF由题意可知:AE=BF=100米,CD=500米 在RtAEC中,C=60°,AE=100米CE=(米) 在RtBFD中,BDF=45°,BF=100DF=100(米) AB=EF=CD+DFCE=500+100600×

9、1.7360057.67542.3(米)答:岛屿两端AB的距离为542.3米【点评】本题考查了仰俯角问题,解决此类题目的关键是正确的将仰俯角转化为直角三角形的内角并用解直角三角形的知识解答即可,解决此类题型的关键是数学转化思想即不规则图形转化为我们所熟悉的特殊图形进行计算难度中等例8.(2012连云港,24,10分)已知B港口位于A观测点北偏东方向53.2°,且其到A观测点正北方向的距离BD的长为16km。一艘货轮从B港口以40km/h的速度沿如图所示的BC方向航行,15min后到达C 处。现测得C处位于观测点北偏东79.8°方向。求此时货轮与A观测点之间的距离AC的长(精

10、确到0.1km).(参考数据:sin53.2°0.80,cos53.2°0.60,sin79.8°0.98,cos79.8°0.18,tan26.6°0.50,1.41,2.24)53.2°16km79.8°【解析】过点B作AC的垂线,把所求线段AC换为两线段的差。利用RtABH和RtBCH求线段AH、CH的长,利用AHCH确定AC的长。【解】BC=40×=10.在RtADB中,sinDAB=, sin53.2°0.8。所以AB=20.如图,过点B作BHAC,交AC的延长线于H。在RtAHB中,BAH=D

11、ACDAB=63.6°37°=26.6°,tanBAH=,0.5=,AH =2BH.BH2CH2=AB 2,BH 2+(2BH)2=202,BH=4,所以AH=8,在RtAHB中,BH2CH2=BC 2,CH=所以AC=AHCH=82613.4km.【点评】本题的关键是把方位角放到相应的直角三角形中,找到直角三角形利用三角函数求出线段的长。五,测量物体的高度1 测量底部可以到达的物体的高度(重点)简单的测倾器由度盘、铅锤和支杆组成。如图。例9:(2012湖北襄阳)在一次数学活动中,李明利用一根拴有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的

12、高度CD如图5,已知李明距假山的水平距离BD为12m,他的眼睛距地面的高度为1.6m,李明的视线经过量角器零刻度线OA和假山的最高点C,此时,铅垂线OE经过量角器的60°刻度线,则假山的高度为( )A(41.6)m B(121.6)m C(41.6)m D4m【解析】如下图,过点A作AFCD于F,则AFBD12m,FDAB1.6m再由OECF可知CAOE60°AOBEDCF所以,在RtACF中,CF4,那么CDCFFD(41.6)m【答案】A【点评】通过作高将问题转化为解直角三角形问题是解答关键,其间需要具有良好的阅读理解能力,能将对应线段和角之间的关系理清2测量底部不可以

13、到达的物体的高度提示:测量底部不可以到达的物体的高度,求解时常要解两个直角三角形。例10:(2012山东青岛)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2米的影子CE;而当光线与地面夹角是45°时,教学楼顶A在地面上的影子F与墙角C有13米的距离(B、F、C在一条直线上)求教学楼AB的高度;学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数). (参考数据:sin22°,cos22°,tan22° )【解析】(1)过点D作DMAB,若假设AB=x米,可表示出AM、ME的长

14、,然后在RtAEM中,利用22°正切建立关系式来解.(2)根据(1)求出ME的长,再RtAME中,可求得之间的距离.【答案】解:过点E作EMAB,垂足为M.设AB为x.RtABF中,AFB=45°,BF=AB=x,BC=BF+FC=x+13在RtAEM中,AEM=22°,AM=AB-BM=AB-CE=x-2,tan22°=,x=12.即教学楼的高12m.由(1)可得ME=BC=x+13=12+13=25.在RtAME中,cos22°=,即之间的距离约为【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键例

15、12:(2012四川省资阳市)小强在教学楼的点P处观察对面的办公大楼为了测量点P到对面办公大楼上部AD的距离,小强测得办公大楼顶部点A的仰角为45°,测得办公大楼底部点B的俯角为60°,已知办公大楼高46米, CD10米求点P到AD的距离(用含根号的式子表示)解:连结PA、PB,过点P作PMAD于点M;延长BC,交PM于点N,则APM=45°,BPM=60°,NM=10米设PM=米在RtPMA中,AM=PM×tanAPM=tan45°(米在RtPNB中,BN=PN×tanBPM=(10)tan60°(10)(米)由

16、AM+BN=46米,得 +(10) 46解得, ,点P到AD的距离为米(结果为米也可)【点评】本题综合考查了直角三角形中的三角函数、特殊角的三角函数值及构造出的方程思想.解决本题的关键是作垂线构造出直角三角形从而再运用三角函数解题。设计意图:通过做练习题,巩固三角函数的相关运算,及对三角函数公式的应用;解决简单的实际问题。主要是让学生回顾基础知识,巩固基本解题能力,也有利于下一环节学生对知识点的总结。二课堂小结学生总结和直角三角形相关的边、角的计算,以及本章的知识点以及感受学生畅所欲言设计意图:通过知识回顾总结,让学生把所做的练习题与知识点相对应,使学生全面掌握、理解并应用相关知识点。三巩固提高1课本31页 复习题A组第10题,B组第5题;2. 课外拓展题: 如图在等腰直角三角形ABC中,C=90°,AC=6,D是AC上一点,若四作业布置1、31页复习题A组6、9题2、复习题B组1、6题板书设计直角三角形的边角关系复习概念典型例题步骤学生板书教后记:学生在本章以前的学习中,已经掌握了直角三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论