三峡库区特高人工筑填路基加固工程数值模拟分析_第1页
三峡库区特高人工筑填路基加固工程数值模拟分析_第2页
三峡库区特高人工筑填路基加固工程数值模拟分析_第3页
三峡库区特高人工筑填路基加固工程数值模拟分析_第4页
三峡库区特高人工筑填路基加固工程数值模拟分析_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、地质工程专业毕业论文 精品论文 三峡库区特高人工筑填路基加固工程数值模拟分析关键词:筑填路基 数值模拟 路基加固 互通式立交 路基边坡 高速公路 地基承载力摘要:本文研究的拟建特高人工筑填路基位于三峡库区影响范围内,属云奉高速公路的一部分。为环保及节约工程造价,将该地段原有的互通式立交改为由在建隧道的弃碴构成的高填方路基,填方路基总体呈弧形,长220.00m,最高为56.20m,平均填方厚度35m,总弃方量133万m3。由于库水位影响及地形条件的制约使得该路基边坡无放坡条件,从而导致拟建路基边坡既高又陡,稳定性难以保证,需要进行加固处理。本文以该特高人工筑填路基为研究载体,采用PLAXIS有限

2、元对路基边坡的主要加固工程进行数值模拟。 该弃渣场设置本着“先挡后弃”的原则进行,填方路基坡脚拟设一拱形坝即重力式挡土墙对填土进行支挡,坝高28m。首先,本文根据工程所在区域地质特征,建立了地质模型,采用常规土压力理论方法,与PLAXIS有限元强度折减法对墙后土压力进行了计算。结果表明有限元分析中,边坡产生的滑动面较深,有滑坡的趋势,土压力值较大。因此设计时取两种方法中较大值。 由于作用于墙背的土压力非常大,挡土墙高度也较大,并且挡土墙基底处于强风化基岩上,因此,基底将会产生较大的压应力,挡土墙的整体稳定性,可能无法满足要求。本文通过PLAXIS有限元,在强度折减法的基础上对加固工程进行了塑性

3、分析。并根据得出的应力、应变及塑性点的分布等综合判断挡土墙的整体稳定性。结果表明:1、重力式挡土墙加固路基边坡后,经数值模拟得出挡土墙沿基底产生了滑动,地基承载力不满足要求,且挡土墙将会发生倾覆。2、依据数值模拟结果,采用四排桩基进行加固后,支挡结构整体没有产生滑动,地基承载力也满足了要求,但挡土墙在抗倾覆方面仍存在一定安全隐患。3、根据桩基挡土墙数值模拟的结果,在挡土墙墙身与承台后侧均以锚杆加固。支挡结构整体不发生滑移,地基承载力满足要求,同时可以确定挡土墙已经达到抗倾覆的稳定状态。 本文采用PLAXIS有限元对特高人工筑填路基边坡的加固工程进行了模拟分析,确定了该设计工程的合理性,同时为类

4、似复杂加固工程的设计提供参考。正文内容 本文研究的拟建特高人工筑填路基位于三峡库区影响范围内,属云奉高速公路的一部分。为环保及节约工程造价,将该地段原有的互通式立交改为由在建隧道的弃碴构成的高填方路基,填方路基总体呈弧形,长220.00m,最高为56.20m,平均填方厚度35m,总弃方量133万m3。由于库水位影响及地形条件的制约使得该路基边坡无放坡条件,从而导致拟建路基边坡既高又陡,稳定性难以保证,需要进行加固处理。本文以该特高人工筑填路基为研究载体,采用PLAXIS有限元对路基边坡的主要加固工程进行数值模拟。 该弃渣场设置本着“先挡后弃”的原则进行,填方路基坡脚拟设一拱形坝即重力式挡土墙对

5、填土进行支挡,坝高28m。首先,本文根据工程所在区域地质特征,建立了地质模型,采用常规土压力理论方法,与PLAXIS有限元强度折减法对墙后土压力进行了计算。结果表明有限元分析中,边坡产生的滑动面较深,有滑坡的趋势,土压力值较大。因此设计时取两种方法中较大值。 由于作用于墙背的土压力非常大,挡土墙高度也较大,并且挡土墙基底处于强风化基岩上,因此,基底将会产生较大的压应力,挡土墙的整体稳定性,可能无法满足要求。本文通过PLAXIS有限元,在强度折减法的基础上对加固工程进行了塑性分析。并根据得出的应力、应变及塑性点的分布等综合判断挡土墙的整体稳定性。结果表明:1、重力式挡土墙加固路基边坡后,经数值模

6、拟得出挡土墙沿基底产生了滑动,地基承载力不满足要求,且挡土墙将会发生倾覆。2、依据数值模拟结果,采用四排桩基进行加固后,支挡结构整体没有产生滑动,地基承载力也满足了要求,但挡土墙在抗倾覆方面仍存在一定安全隐患。3、根据桩基挡土墙数值模拟的结果,在挡土墙墙身与承台后侧均以锚杆加固。支挡结构整体不发生滑移,地基承载力满足要求,同时可以确定挡土墙已经达到抗倾覆的稳定状态。 本文采用PLAXIS有限元对特高人工筑填路基边坡的加固工程进行了模拟分析,确定了该设计工程的合理性,同时为类似复杂加固工程的设计提供参考。本文研究的拟建特高人工筑填路基位于三峡库区影响范围内,属云奉高速公路的一部分。为环保及节约工

7、程造价,将该地段原有的互通式立交改为由在建隧道的弃碴构成的高填方路基,填方路基总体呈弧形,长220.00m,最高为56.20m,平均填方厚度35m,总弃方量133万m3。由于库水位影响及地形条件的制约使得该路基边坡无放坡条件,从而导致拟建路基边坡既高又陡,稳定性难以保证,需要进行加固处理。本文以该特高人工筑填路基为研究载体,采用PLAXIS有限元对路基边坡的主要加固工程进行数值模拟。 该弃渣场设置本着“先挡后弃”的原则进行,填方路基坡脚拟设一拱形坝即重力式挡土墙对填土进行支挡,坝高28m。首先,本文根据工程所在区域地质特征,建立了地质模型,采用常规土压力理论方法,与PLAXIS有限元强度折减法

8、对墙后土压力进行了计算。结果表明有限元分析中,边坡产生的滑动面较深,有滑坡的趋势,土压力值较大。因此设计时取两种方法中较大值。 由于作用于墙背的土压力非常大,挡土墙高度也较大,并且挡土墙基底处于强风化基岩上,因此,基底将会产生较大的压应力,挡土墙的整体稳定性,可能无法满足要求。本文通过PLAXIS有限元,在强度折减法的基础上对加固工程进行了塑性分析。并根据得出的应力、应变及塑性点的分布等综合判断挡土墙的整体稳定性。结果表明:1、重力式挡土墙加固路基边坡后,经数值模拟得出挡土墙沿基底产生了滑动,地基承载力不满足要求,且挡土墙将会发生倾覆。2、依据数值模拟结果,采用四排桩基进行加固后,支挡结构整体

9、没有产生滑动,地基承载力也满足了要求,但挡土墙在抗倾覆方面仍存在一定安全隐患。3、根据桩基挡土墙数值模拟的结果,在挡土墙墙身与承台后侧均以锚杆加固。支挡结构整体不发生滑移,地基承载力满足要求,同时可以确定挡土墙已经达到抗倾覆的稳定状态。 本文采用PLAXIS有限元对特高人工筑填路基边坡的加固工程进行了模拟分析,确定了该设计工程的合理性,同时为类似复杂加固工程的设计提供参考。本文研究的拟建特高人工筑填路基位于三峡库区影响范围内,属云奉高速公路的一部分。为环保及节约工程造价,将该地段原有的互通式立交改为由在建隧道的弃碴构成的高填方路基,填方路基总体呈弧形,长220.00m,最高为56.20m,平均

10、填方厚度35m,总弃方量133万m3。由于库水位影响及地形条件的制约使得该路基边坡无放坡条件,从而导致拟建路基边坡既高又陡,稳定性难以保证,需要进行加固处理。本文以该特高人工筑填路基为研究载体,采用PLAXIS有限元对路基边坡的主要加固工程进行数值模拟。 该弃渣场设置本着“先挡后弃”的原则进行,填方路基坡脚拟设一拱形坝即重力式挡土墙对填土进行支挡,坝高28m。首先,本文根据工程所在区域地质特征,建立了地质模型,采用常规土压力理论方法,与PLAXIS有限元强度折减法对墙后土压力进行了计算。结果表明有限元分析中,边坡产生的滑动面较深,有滑坡的趋势,土压力值较大。因此设计时取两种方法中较大值。 由于

11、作用于墙背的土压力非常大,挡土墙高度也较大,并且挡土墙基底处于强风化基岩上,因此,基底将会产生较大的压应力,挡土墙的整体稳定性,可能无法满足要求。本文通过PLAXIS有限元,在强度折减法的基础上对加固工程进行了塑性分析。并根据得出的应力、应变及塑性点的分布等综合判断挡土墙的整体稳定性。结果表明:1、重力式挡土墙加固路基边坡后,经数值模拟得出挡土墙沿基底产生了滑动,地基承载力不满足要求,且挡土墙将会发生倾覆。2、依据数值模拟结果,采用四排桩基进行加固后,支挡结构整体没有产生滑动,地基承载力也满足了要求,但挡土墙在抗倾覆方面仍存在一定安全隐患。3、根据桩基挡土墙数值模拟的结果,在挡土墙墙身与承台后

12、侧均以锚杆加固。支挡结构整体不发生滑移,地基承载力满足要求,同时可以确定挡土墙已经达到抗倾覆的稳定状态。 本文采用PLAXIS有限元对特高人工筑填路基边坡的加固工程进行了模拟分析,确定了该设计工程的合理性,同时为类似复杂加固工程的设计提供参考。本文研究的拟建特高人工筑填路基位于三峡库区影响范围内,属云奉高速公路的一部分。为环保及节约工程造价,将该地段原有的互通式立交改为由在建隧道的弃碴构成的高填方路基,填方路基总体呈弧形,长220.00m,最高为56.20m,平均填方厚度35m,总弃方量133万m3。由于库水位影响及地形条件的制约使得该路基边坡无放坡条件,从而导致拟建路基边坡既高又陡,稳定性难

13、以保证,需要进行加固处理。本文以该特高人工筑填路基为研究载体,采用PLAXIS有限元对路基边坡的主要加固工程进行数值模拟。 该弃渣场设置本着“先挡后弃”的原则进行,填方路基坡脚拟设一拱形坝即重力式挡土墙对填土进行支挡,坝高28m。首先,本文根据工程所在区域地质特征,建立了地质模型,采用常规土压力理论方法,与PLAXIS有限元强度折减法对墙后土压力进行了计算。结果表明有限元分析中,边坡产生的滑动面较深,有滑坡的趋势,土压力值较大。因此设计时取两种方法中较大值。 由于作用于墙背的土压力非常大,挡土墙高度也较大,并且挡土墙基底处于强风化基岩上,因此,基底将会产生较大的压应力,挡土墙的整体稳定性,可能

14、无法满足要求。本文通过PLAXIS有限元,在强度折减法的基础上对加固工程进行了塑性分析。并根据得出的应力、应变及塑性点的分布等综合判断挡土墙的整体稳定性。结果表明:1、重力式挡土墙加固路基边坡后,经数值模拟得出挡土墙沿基底产生了滑动,地基承载力不满足要求,且挡土墙将会发生倾覆。2、依据数值模拟结果,采用四排桩基进行加固后,支挡结构整体没有产生滑动,地基承载力也满足了要求,但挡土墙在抗倾覆方面仍存在一定安全隐患。3、根据桩基挡土墙数值模拟的结果,在挡土墙墙身与承台后侧均以锚杆加固。支挡结构整体不发生滑移,地基承载力满足要求,同时可以确定挡土墙已经达到抗倾覆的稳定状态。 本文采用PLAXIS有限元

15、对特高人工筑填路基边坡的加固工程进行了模拟分析,确定了该设计工程的合理性,同时为类似复杂加固工程的设计提供参考。本文研究的拟建特高人工筑填路基位于三峡库区影响范围内,属云奉高速公路的一部分。为环保及节约工程造价,将该地段原有的互通式立交改为由在建隧道的弃碴构成的高填方路基,填方路基总体呈弧形,长220.00m,最高为56.20m,平均填方厚度35m,总弃方量133万m3。由于库水位影响及地形条件的制约使得该路基边坡无放坡条件,从而导致拟建路基边坡既高又陡,稳定性难以保证,需要进行加固处理。本文以该特高人工筑填路基为研究载体,采用PLAXIS有限元对路基边坡的主要加固工程进行数值模拟。 该弃渣场

16、设置本着“先挡后弃”的原则进行,填方路基坡脚拟设一拱形坝即重力式挡土墙对填土进行支挡,坝高28m。首先,本文根据工程所在区域地质特征,建立了地质模型,采用常规土压力理论方法,与PLAXIS有限元强度折减法对墙后土压力进行了计算。结果表明有限元分析中,边坡产生的滑动面较深,有滑坡的趋势,土压力值较大。因此设计时取两种方法中较大值。 由于作用于墙背的土压力非常大,挡土墙高度也较大,并且挡土墙基底处于强风化基岩上,因此,基底将会产生较大的压应力,挡土墙的整体稳定性,可能无法满足要求。本文通过PLAXIS有限元,在强度折减法的基础上对加固工程进行了塑性分析。并根据得出的应力、应变及塑性点的分布等综合判

17、断挡土墙的整体稳定性。结果表明:1、重力式挡土墙加固路基边坡后,经数值模拟得出挡土墙沿基底产生了滑动,地基承载力不满足要求,且挡土墙将会发生倾覆。2、依据数值模拟结果,采用四排桩基进行加固后,支挡结构整体没有产生滑动,地基承载力也满足了要求,但挡土墙在抗倾覆方面仍存在一定安全隐患。3、根据桩基挡土墙数值模拟的结果,在挡土墙墙身与承台后侧均以锚杆加固。支挡结构整体不发生滑移,地基承载力满足要求,同时可以确定挡土墙已经达到抗倾覆的稳定状态。 本文采用PLAXIS有限元对特高人工筑填路基边坡的加固工程进行了模拟分析,确定了该设计工程的合理性,同时为类似复杂加固工程的设计提供参考。本文研究的拟建特高人

18、工筑填路基位于三峡库区影响范围内,属云奉高速公路的一部分。为环保及节约工程造价,将该地段原有的互通式立交改为由在建隧道的弃碴构成的高填方路基,填方路基总体呈弧形,长220.00m,最高为56.20m,平均填方厚度35m,总弃方量133万m3。由于库水位影响及地形条件的制约使得该路基边坡无放坡条件,从而导致拟建路基边坡既高又陡,稳定性难以保证,需要进行加固处理。本文以该特高人工筑填路基为研究载体,采用PLAXIS有限元对路基边坡的主要加固工程进行数值模拟。 该弃渣场设置本着“先挡后弃”的原则进行,填方路基坡脚拟设一拱形坝即重力式挡土墙对填土进行支挡,坝高28m。首先,本文根据工程所在区域地质特征

19、,建立了地质模型,采用常规土压力理论方法,与PLAXIS有限元强度折减法对墙后土压力进行了计算。结果表明有限元分析中,边坡产生的滑动面较深,有滑坡的趋势,土压力值较大。因此设计时取两种方法中较大值。 由于作用于墙背的土压力非常大,挡土墙高度也较大,并且挡土墙基底处于强风化基岩上,因此,基底将会产生较大的压应力,挡土墙的整体稳定性,可能无法满足要求。本文通过PLAXIS有限元,在强度折减法的基础上对加固工程进行了塑性分析。并根据得出的应力、应变及塑性点的分布等综合判断挡土墙的整体稳定性。结果表明:1、重力式挡土墙加固路基边坡后,经数值模拟得出挡土墙沿基底产生了滑动,地基承载力不满足要求,且挡土墙

20、将会发生倾覆。2、依据数值模拟结果,采用四排桩基进行加固后,支挡结构整体没有产生滑动,地基承载力也满足了要求,但挡土墙在抗倾覆方面仍存在一定安全隐患。3、根据桩基挡土墙数值模拟的结果,在挡土墙墙身与承台后侧均以锚杆加固。支挡结构整体不发生滑移,地基承载力满足要求,同时可以确定挡土墙已经达到抗倾覆的稳定状态。 本文采用PLAXIS有限元对特高人工筑填路基边坡的加固工程进行了模拟分析,确定了该设计工程的合理性,同时为类似复杂加固工程的设计提供参考。本文研究的拟建特高人工筑填路基位于三峡库区影响范围内,属云奉高速公路的一部分。为环保及节约工程造价,将该地段原有的互通式立交改为由在建隧道的弃碴构成的高

21、填方路基,填方路基总体呈弧形,长220.00m,最高为56.20m,平均填方厚度35m,总弃方量133万m3。由于库水位影响及地形条件的制约使得该路基边坡无放坡条件,从而导致拟建路基边坡既高又陡,稳定性难以保证,需要进行加固处理。本文以该特高人工筑填路基为研究载体,采用PLAXIS有限元对路基边坡的主要加固工程进行数值模拟。 该弃渣场设置本着“先挡后弃”的原则进行,填方路基坡脚拟设一拱形坝即重力式挡土墙对填土进行支挡,坝高28m。首先,本文根据工程所在区域地质特征,建立了地质模型,采用常规土压力理论方法,与PLAXIS有限元强度折减法对墙后土压力进行了计算。结果表明有限元分析中,边坡产生的滑动

22、面较深,有滑坡的趋势,土压力值较大。因此设计时取两种方法中较大值。 由于作用于墙背的土压力非常大,挡土墙高度也较大,并且挡土墙基底处于强风化基岩上,因此,基底将会产生较大的压应力,挡土墙的整体稳定性,可能无法满足要求。本文通过PLAXIS有限元,在强度折减法的基础上对加固工程进行了塑性分析。并根据得出的应力、应变及塑性点的分布等综合判断挡土墙的整体稳定性。结果表明:1、重力式挡土墙加固路基边坡后,经数值模拟得出挡土墙沿基底产生了滑动,地基承载力不满足要求,且挡土墙将会发生倾覆。2、依据数值模拟结果,采用四排桩基进行加固后,支挡结构整体没有产生滑动,地基承载力也满足了要求,但挡土墙在抗倾覆方面仍

23、存在一定安全隐患。3、根据桩基挡土墙数值模拟的结果,在挡土墙墙身与承台后侧均以锚杆加固。支挡结构整体不发生滑移,地基承载力满足要求,同时可以确定挡土墙已经达到抗倾覆的稳定状态。 本文采用PLAXIS有限元对特高人工筑填路基边坡的加固工程进行了模拟分析,确定了该设计工程的合理性,同时为类似复杂加固工程的设计提供参考。本文研究的拟建特高人工筑填路基位于三峡库区影响范围内,属云奉高速公路的一部分。为环保及节约工程造价,将该地段原有的互通式立交改为由在建隧道的弃碴构成的高填方路基,填方路基总体呈弧形,长220.00m,最高为56.20m,平均填方厚度35m,总弃方量133万m3。由于库水位影响及地形条

24、件的制约使得该路基边坡无放坡条件,从而导致拟建路基边坡既高又陡,稳定性难以保证,需要进行加固处理。本文以该特高人工筑填路基为研究载体,采用PLAXIS有限元对路基边坡的主要加固工程进行数值模拟。 该弃渣场设置本着“先挡后弃”的原则进行,填方路基坡脚拟设一拱形坝即重力式挡土墙对填土进行支挡,坝高28m。首先,本文根据工程所在区域地质特征,建立了地质模型,采用常规土压力理论方法,与PLAXIS有限元强度折减法对墙后土压力进行了计算。结果表明有限元分析中,边坡产生的滑动面较深,有滑坡的趋势,土压力值较大。因此设计时取两种方法中较大值。 由于作用于墙背的土压力非常大,挡土墙高度也较大,并且挡土墙基底处

25、于强风化基岩上,因此,基底将会产生较大的压应力,挡土墙的整体稳定性,可能无法满足要求。本文通过PLAXIS有限元,在强度折减法的基础上对加固工程进行了塑性分析。并根据得出的应力、应变及塑性点的分布等综合判断挡土墙的整体稳定性。结果表明:1、重力式挡土墙加固路基边坡后,经数值模拟得出挡土墙沿基底产生了滑动,地基承载力不满足要求,且挡土墙将会发生倾覆。2、依据数值模拟结果,采用四排桩基进行加固后,支挡结构整体没有产生滑动,地基承载力也满足了要求,但挡土墙在抗倾覆方面仍存在一定安全隐患。3、根据桩基挡土墙数值模拟的结果,在挡土墙墙身与承台后侧均以锚杆加固。支挡结构整体不发生滑移,地基承载力满足要求,

26、同时可以确定挡土墙已经达到抗倾覆的稳定状态。 本文采用PLAXIS有限元对特高人工筑填路基边坡的加固工程进行了模拟分析,确定了该设计工程的合理性,同时为类似复杂加固工程的设计提供参考。本文研究的拟建特高人工筑填路基位于三峡库区影响范围内,属云奉高速公路的一部分。为环保及节约工程造价,将该地段原有的互通式立交改为由在建隧道的弃碴构成的高填方路基,填方路基总体呈弧形,长220.00m,最高为56.20m,平均填方厚度35m,总弃方量133万m3。由于库水位影响及地形条件的制约使得该路基边坡无放坡条件,从而导致拟建路基边坡既高又陡,稳定性难以保证,需要进行加固处理。本文以该特高人工筑填路基为研究载体

27、,采用PLAXIS有限元对路基边坡的主要加固工程进行数值模拟。 该弃渣场设置本着“先挡后弃”的原则进行,填方路基坡脚拟设一拱形坝即重力式挡土墙对填土进行支挡,坝高28m。首先,本文根据工程所在区域地质特征,建立了地质模型,采用常规土压力理论方法,与PLAXIS有限元强度折减法对墙后土压力进行了计算。结果表明有限元分析中,边坡产生的滑动面较深,有滑坡的趋势,土压力值较大。因此设计时取两种方法中较大值。 由于作用于墙背的土压力非常大,挡土墙高度也较大,并且挡土墙基底处于强风化基岩上,因此,基底将会产生较大的压应力,挡土墙的整体稳定性,可能无法满足要求。本文通过PLAXIS有限元,在强度折减法的基础

28、上对加固工程进行了塑性分析。并根据得出的应力、应变及塑性点的分布等综合判断挡土墙的整体稳定性。结果表明:1、重力式挡土墙加固路基边坡后,经数值模拟得出挡土墙沿基底产生了滑动,地基承载力不满足要求,且挡土墙将会发生倾覆。2、依据数值模拟结果,采用四排桩基进行加固后,支挡结构整体没有产生滑动,地基承载力也满足了要求,但挡土墙在抗倾覆方面仍存在一定安全隐患。3、根据桩基挡土墙数值模拟的结果,在挡土墙墙身与承台后侧均以锚杆加固。支挡结构整体不发生滑移,地基承载力满足要求,同时可以确定挡土墙已经达到抗倾覆的稳定状态。 本文采用PLAXIS有限元对特高人工筑填路基边坡的加固工程进行了模拟分析,确定了该设计

29、工程的合理性,同时为类似复杂加固工程的设计提供参考。本文研究的拟建特高人工筑填路基位于三峡库区影响范围内,属云奉高速公路的一部分。为环保及节约工程造价,将该地段原有的互通式立交改为由在建隧道的弃碴构成的高填方路基,填方路基总体呈弧形,长220.00m,最高为56.20m,平均填方厚度35m,总弃方量133万m3。由于库水位影响及地形条件的制约使得该路基边坡无放坡条件,从而导致拟建路基边坡既高又陡,稳定性难以保证,需要进行加固处理。本文以该特高人工筑填路基为研究载体,采用PLAXIS有限元对路基边坡的主要加固工程进行数值模拟。 该弃渣场设置本着“先挡后弃”的原则进行,填方路基坡脚拟设一拱形坝即重力式挡土墙对填土进行支挡,坝高28m。首先,本文根据工程所在区域地质特征,建立了地质模型,采用常规土压力理论方法,与PLAXIS有限元强度折减法对墙后土压力进行了计算。结果表明有限元分析中,边坡产生的滑动面较深,有滑坡的趋势,土压力值较大。因此设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论