




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、平面向量数量积的坐标表示、模、夹角一、教材分析本课的地位及作用:平面向量数量积的坐标表示,就是运用坐标这一量化工具表达向量的数量积运算,为研究平面中的距离、垂直、角度等问题提供了全新的手段。它把向量的数量积与坐标运算两个知识点紧密联系起来,是全章重点之一。二教学目标1学会用平面向量数量积的坐标表达式,会进行数量积的运算。理解掌握向量的模、夹角等公式。能根据公式解决两个向量的夹角、垂直等问题。2(1)通出问题,把问题的求解与探究贯穿整堂课,学生在自主探究中发现了结论(2)通过对向量平行与垂直的充要条件的坐标表示的类比,教给了学生类比联想的记忆方法。3经历根据平面向量数量积的意义探究其坐标表示的过
2、程,体验在此基础上探究发现向量的模、夹角等重要的度量公式的成功乐趣,培养学生的探究能力、创新精神、三、教学重点难点重点:平面向量数量积的坐标表示.难点:向量数量积的坐标表示的应用.四、学情分析此之前学生已学习了平面向量的坐标表示和平面向量数量积概念及运算,但数量积是用长度和夹角这两个概念来表示的,应用起来不太方便,如何用坐标这一最基本、最常用的工具来表示数量积,使之应用更方便,就是摆在学生面前的一个亟待解决的问题。因此,本节内容的学习是学生认知发展和知识构建的一个合情、合理的“生长点”。所以,本节课采取以学生自主完成为主,教师查漏补缺的教学方法。因此结合中学生的认知结构特点和学生实际。我将本节
3、教学目标确定为:1、理解掌握平面向量数量积的坐标表达式,会进行数量积的运算。理解掌握向量的模、夹角等公式。能根据公式解决两个向量的夹角、垂直等问题2、经历根据平面向量数量积的意义探究其坐标表示的过程,体验在此基础上探究发现向量的模、夹角等重要的度量公式的成功乐趣,培养学生的探究能力、创新精神。五、教学方法1实验法:多媒体、实物投影仪。2学案导学:见后面的学案。3新授课教学基本环节:预习检查、总结疑惑情境导入、展示目标合作探究、精讲点拨反思总结、当堂检测发导学案、布置预习。六、课前准备1学生的学习准备:预习学案。2教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。七、
4、课时安排:1课时八、教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。(二)情景导入、展示目标。创设问题情景,引出新课a与b的数量积 的定义?向量的运算有几种?应怎样计算?出示学习目标:1、理解掌握平面向量数量积的坐标表示、向量的 夹角、模的 公式.2、两个向量垂直的坐标表示3、运用两个向量的数量积的坐标表示初步解决处理有关长度垂直的几个问题.(三)合作探究,精讲点拨探究一:已知两个非零向量a=(x1,x2),b=(x2,y2),怎样用a与b的坐标表示数量积a·b呢?a·b=(x1,y1)·(x2,y2)=(x1i+y
5、1j)·(x2i+y2j)=x1x2i2+x1y2i·j+x2y1i·j+y1y2j2=x1x2+y1y2即:两个向量的数量积等于它们对应坐标的乘积的和师生:学生回答提出的问题,教师点评学生:合作探索提出的问题。教师:巡视辅导学生,解决遇到的困难,估计学生对正交单位基向量i,j的运算可能有困难,点拨学:i2=1,j2=1,i·j=0师生:学生展示探究结果,教师给予点评设计意图:回顾平面向量数量积的意义,为探究数量积的坐标表示做好准备。创设情境激发学生的学习兴趣,出示学习目标使学生了解本课的任务问题引领,培养学生的探索研究能力探究二:探索发现向量的模的坐标
6、表达式若a=(x,y),如何计算向量的模|a|呢? 若A(x1,x2),B(x2,y2),如何计算向量AB的模两点A、B间的距离呢?教师提出问题学生:独立思考探究合作交流让学生展示探究的结论,教师总结设计意图:在向量数量积的坐标表示基础上,探索发现向量的模例1、如图,以原点和A(5, 2)为顶点作等腰直角OAB,使ÐB = 90°,求点B和向量的坐标.解:设B点坐标(x, y),则= (x, y),= (x-5, y-2) x(x-5) + y(y-2) = 0即:x2 + y2 -5x - 2y = 0又| = | x2 + y2 = (x-5)2 + (y-2)2即:1
7、0x + 4y = 29由B点坐标或;=或 评述:用向量的垂直关系的坐标表示作为此题的突破点。变式:已知探究三:向量夹角、垂直、坐标表示设a,b都是非零向量,a=(x1,y1),b(x2,y2),如何判定ab或计算a与b的夹角<a,b>呢?1、向量夹角的坐标表示 2、ab<=>a·b=0<=>x1x2+y1y2=03、ab <=>X1y2-x2y1=0学生:独立思考、探究,合作交流,师生:让学生展示探究的结论,教师总结提醒学生ab与ab坐标表达式的不同设计意图:在向量数量积的坐标表示基础上两向量垂直,两向量夹角的坐标表达式例2 在ABC
8、中,=(2, 3),=(1, k),且ABC的一个内角为直角,求k值.解:当A = 90°时,×= 0,2×1 +3×k = 0 k = 当B = 90°时,×= 0,=-= (1-2, k-3) = (-1, k-3)2×(-1) +3×(k-3) = 0 k = 当C = 90°时,×= 0,-1 + k(k-3) = 0 k = 评述:熟练应用向量的夹角公式。变式:已知,当k为何值时,(1)垂直?(2)平行吗?平行时它们是同向还是反向?(四)反思总结,当堂检测。教师组织学生反思总结本节课的
9、主要内容,并进行当堂检测。设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)(五)发导学案、布置预习。我们已经学习数量积的坐标运算。模。夹角。下节学习平面向量应用举例这节课后大家可以先预习这一部分,着重体会向量是一种处理几何问题。物理问题的工具增强应用意识提高解题能力九、板书设计平面向量数量积的坐标表示、模、夹角(一)平面向量数量积的坐标表示 二、平面向量的模 例1:1、 概念强调 (1)记法 例2:(2)“规定” 三、平面向量数量积的夹角 十、教学反思1教学方法:结合本节教材浅显易懂,又有前面平面向量的数量积和向量的坐标表示等知识作铺垫的内容特点,兼顾高一学生已具备一
10、定的数学思维能力和处理向量问题的方法的现状,我主要采用“诱思探究教学法”,其核心是“诱导思维,探索研究”,其教学思想是“教师为主导,学生为主体,训练为主线的原则,为此,我通过精心设置的一个个问题,激发学生的求知欲,积极的鼓励学生的参与,给学生独立思考的空间,鼓励学生自主探索,最终在教师的指导下去探索发现问题,解决问题。在教学中,我适时的对学生学习过程给予评价,适当的评价,可以培养学生的自信心,合作交流的意识,更进一步地激发了学生的学习兴趣,让他们体验成功的喜悦。2教学手段:利用多媒体辅助教学,可以加大一堂课的信息容量,极大提高学生的学习兴趣。十一、学案设计(见下页)平面向量数量积的坐标表示、模
11、、夹角课前预习学案一、预习目标:预习平面向量数量积的坐标表达式,会进行数量积的运算。了解向量的模、夹角等公式。二、预习内容:1.平面向量数量积(内积)的坐标表示 2.引入向量的数量积的坐标表示,我们得到下面一些重要结论:(1)向量模的坐标表示: 能表示单位向量的模吗? (2)平面上两点间的距离公式: 向量a的起点和终点坐标分别为A(x1,y1),B(x2,y2)AB= (3)两向量的夹角公式cosq = 3. 向量垂直的判定(坐标表示) 4.向量平行的判定(坐标表示) 三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标学会用平面向
12、量数量积的坐标表达式,会进行数量积的运算。掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题. 学习重难点:平面向量数量积及运算规律.平面向量数量积的应用二、学习过程(一)创设问题情景,引出新课a与b的数量积 的定义?向量的运算有几种?应怎样计算?(二)合作探究,精讲点拨探究一:已知两个非零向量a=(x1,x2),b=(x2,y2),怎样用a与b的坐标表示数量积a·b呢?a·b=(x1,y1)·(x2,y2)=(x1i+y1j)·(x2i+y2j)=x1x2i2+x1y2i·j+x2y1i·j+y1y2j2=x
13、1x2+y1y2教师:巡视辅导学生,解决遇到的困难,估计学生对正交单位基向量i,j的运算可能有困难,点拨学生:i2=1,j2=1,i·j=0探究二:探索发现向量的模的坐标表达式若a=(x,y),如何计算向量的模|a|呢? 若A(x1,x2),B(x2,y2),如何计算向量AB的模两点A、B间的距离呢?例1、如图,以原点和A(5, 2)为顶点作等腰直角OAB,使ÐB = 90°,求点B和向量的坐标.变式:已知探究三:向量夹角、垂直、坐标表示设a,b都是非零向量,a=(x1,y1),b(x2,y2),如何判定ab或计算a与b的夹角<a,b>呢?1、向量夹角
14、的坐标表示2、ab<=> <=>x1x2+y1y2=0 3、ab <=>X1y2-x2y1=0例2 在ABC中,=(2, 3),=(1, k),且ABC的一个内角为直角,求k值.变式:已知,当k为何值时,(1)垂直?(2)平行吗?平行时它们是同向还是反向?(三)反思总结 (四)当堂检测1.已知|a|=1,|b|=,且(a-b)与a垂直,则a与b的夹角是( )A.60° B.30° C.135° D.°2.已知|a|=2,|b|=1,a与b之间的夹角为,那么向量m=a-4b的模为( )A.2 B.2 C.6 D.123、a=(5,-7),b=(-6,-4),求a与b的 数量积4、设a=(2,1),b=(1,3),求a·b及a与b的夹角5、已知向量a=(-2,-1),b=(,1)若a与b的夹角为钝角,则取值范围是多少?课后练习与提高1.已知则()A.23 B.57 C.63 D.832.已知则夹角的余弦为()A. B. C. D.3.则_。4.已知则_。5.则_ _6.与垂直的单位向量是_A. B. D. 7.则方向上的投影为_8.A(1,2),B(2,3),C(2,0)所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大健康排毒知识培训总结课件
- 零碳工厂太阳能光伏发电系统设计
- 公司海洋油气操作工技能巩固考核试卷及答案
- 公司时钟装配工岗位操作规程考核试卷及答案
- 2025年山东省黄河三角洲农业高新技术产业示范区山东省师范类高校学生从业技能大赛一、二等奖获得者(13人)考前自测高频考点模拟试题及一套完整答案详解
- 公司泥面塑工设备维护与保养考核试卷及答案
- 大众售后维修知识培训课件
- 公司高纯试剂工新员工考核试卷及答案
- 公司金属纽扣饰扣制作工操作考核试卷及答案
- 给水设备自动化控制与智能监测系统方案
- 我的家乡延安
- 各种奶茶配方资料
- 八年级语文下册-专题08-语言表达与运用-(中考真题演练)(原卷版)
- 《机械制图识图培训》课件
- 物流班组长年终总结
- 2024年计算机软件水平考试-中级系统集成项目管理工程师考试近5年真题附答案
- 新能源汽车充电站建设项目 投标方案(技术方案)
- 留置针静脉血栓形成的原因及预防措施
- 隧道工程技术标完成版
- 甲方现场管理基础手册
- 2024版合伙人退出合伙协议书书
评论
0/150
提交评论