正交实验举例20160729_第1页
正交实验举例20160729_第2页
正交实验举例20160729_第3页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、正交实验举例20160729回首页正交试验设计法正交试验设计法的基本思想正交表正交表试验方案的设计试验数据的直观分析正交试验的方差分析常用正交表1. 正交试验设计法的基本思想正交试验设计法,就是使用已经造好了的表格-正交表-来安排试验并进行数据分析的一种方法。它简单易行,计算表格化,使用者能够迅速掌握。下边通 过一个例子来说明正交试验设计法的基本想法。例1为提高某化工产品的转化率,选择了三个有关因素进行条件试验,反应温度(A),反应时间(B),用碱量(C),并确定了它们的试验范围:A: 80-90 EB: 90-150 分钟C: 5-7 %试验目的是搞清楚因子 A、B C对转化率有什么影响,哪

2、些是主要的,哪些是 次要的,从而确定最适生产条件,即温度、时间及用碱量各为多少才能使转化 率咼。试制定试验方案。这里,对因子A,在试验范围内选了三个水平;因子 B和C也都取三个水平: A: Al = 80°C,A2= 85°C,A3=90CB: Bl = 90 分,B2= 120 分,B3=150分C: Cl = 5%,C2= 6% CA7%当然,在正交试验设计中,因子可以是定量的,也可以是定性的。而定量因子各水平间的距离可以相等,也可以不相等。 这个三因子三水平的条件试验,通常有两 种试验进行方法:(I )取三因子所有水平之间的组合,即AIBIC1,A1B1C2, A1B

3、2C1 ,A3B3C3共有33=27次试验。用图表示就是图1立方体的27个节点。这种试验法叫做全面试验法。 全面试验对各因子与指标间的关系剖析得比较清楚。但试验次数太多。特别是 当因子数目多,每个因子的水平数目也多时。试验量大得惊人。如选六个因子, 每个因子取五个水平时,如欲做全面试验,则需56二15625次试验,这实际上是不可能实现的。如果应用正交实验法,只做25次试验就行了。而且在某种意义上讲,这25次试验代表了 15625次试验。图1全面试验法取点 (n )简单对比法,即变化一个因素而固定其他因素,如首先固定B、C于Bl、Cl 使A变化之:/ A1B1C1 A2 A3 (好结果)如得出结

4、果A3最好,贝U固定A于A3, C还是Cl,使B变化之:/ B1A3C1 B2 (好结果) B3得出结果以B2为最好,则固定B于B2, A于A3,使C变化之:/ C1A3B3C2 (好结果) C3试验结果以C2最好。于是就认为最好的工艺条件是 A3B2C2这种方法一般也有一定的效果,但缺点很多。首先这种方法的选点代表性很差, 如按上述方法进行试验,试验点完全分布在一个角上,而在一个很大的范围内 没有选点。因此这种试验方法不全面,所选的工艺条件A3B2C2不一定是27个组合中最好的。其次,用这种方法比较条件好坏时,是把单个的试验数据拿来, 进行数值上的简单比较,而试验数据中必然要包含着误差成分,

5、所以单个数据 的简单比较不能剔除误差的干扰,必然造成结论的不稳定。简单对比法的最大优点就是试验次数少,例如六因子五水平试验,在不重复时,只用5+(6- 1) X (5-1) = 5+5X 4= 25次试验就可以了。考虑兼顾这两种试验方法的优点,从全面试 验的点中选择具有典型性、代表性的点,使 试验点在试验范围内分布得很均匀,能反映 全面情况。但我们又希望试验点尽量地少, 为此还要具体考虑一些问题。如上例,对应于 A有Al、A2、A3三个平面, 对应于B C也各有三个平面,共九个平面。 则这九个平面上的试验点都应当一样多,即 对每个因子的每个水平都要同等看待。具体来说,每个平面上都有三行、三列,

6、 要求在每行、每列上的点一样多。这样,作出如图 2所示的设计,试验点用。 表示。我们看到,在9个平面中每个平面上都恰好有三个点而每个平面的每行 每列都有一个点,而且只有一个点,总共九个点。这样的试验方案,试验点的 分布很均匀,试验次数也不多。当因子数和水平数都不太大时,尚可通过作图的办法来选择分布很均匀的试验点。但是因子数和水平数多了,作图的方法就不行了。试验工作者在长期的工作中总结出一套办法,创造出所谓的正交表。按照正交 表来安排试验,既能使试验点分布得很均匀,又能减少试验次数,图2正交试验设计图例而且计算分析简单,能够清晰地阐明试验条件与指标之间的关系。用正交表来安排试验及分析试验结果,这

7、种方法叫正交试验设计法。2. 正交表本书附录给出了常用的正交表。为了叙述方便,用L代表正交表,常用的有L8(27),L9(34),L16(45),L8(4 X 24),L12(211),等等。此符号各数字的意 义如下:L8(27)7为此表列的数目(最多可安排的因子数)2为因子的水平数8为此表行的数目(试验次数)L18(2 X 37)有7列是3水平的有1列是2水平的L18(2 X 37)的数字告诉我们,用它来安排试验,做18个试验最多可以考察一个2水平因子和7个3水平因子。在行数为mn型的正交表中(m,n是正整数),试验次数(行数)二工(每列水平数一 1)+1 (1)如 L8(27),8 = 7

8、X (2-1)+1利用上述关系式可以从所要考察的因子水平数来决定最低的试验次数,进而选 择合适的正交表。比如要考察五个3水平因子及一个2水平因子,则起码的试验次数为5X (3-1)+1 X (2-1)+1 = 12 (次)这就是说,要在行数不小于12,既有2水平列又有3水平列的正交表中选择, L18(2 X 37)适合。正交表具有两条性质:(1)每一列中各数字出现的次数都一样多。(2)任何两列 所构成的各有序数对出现的次数都一样多。所以称之谓正交表。例如在L9(34)中(见表1),各列中的I、2、3都各自出现3次;任何两列,例 如第3、4列,所构成的有序数对从上向下共有九种,既没有重复也没有遗

9、漏 其他任何两列所构成的有序数对也是这九种各出现一次。这反映了试验点分布 的均匀性。表 1 Lj C34)列行号12 1134水平1111121222313334212352231623117313233213g3321返回3. 试验方案的设计安排试验时,只要把所考察的每一个因子任意地对应于正交表的一列(一个因子对应一列,不能让两个因子对应同一列),然后把每列的数字"翻译"成所对应因 子的水平。这样,每一行的各水平组合就构成了一个试验条件 (不考虑没安排因 子的列)。对于例1,因子A B C都是三水平的,试验次数要不少于3X (3-1)+1 = 7(次)可考虑选用L9(34

10、)。因子A、B、C可任意地对应于L9(34)的某三列,例如A B、 C分别放在I、2、3列,然后试验按行进行,顺序不限,每一行中各因素的水平 组合就是每一次的试验条件,从上到下就是这个正交试验的方案,见表2。这个试验方案的几何解释正好是图2。表2因子安鼎E试验方案行号A12C34号水平组合试验条件(巧时间倦)加腻量(附111111E0005212222120£53133335015074212348590652231535120162312百g站笳15057313219090183213Z90120593331990150&三个3水平的因子,做全面试验需要33= 27次试验,

11、现用L9(34)来设计试验方 案,只要做9次,工作量减少了 2/3,而在一定意义上代表了 27次试验.。 再看一个用L9(34)安排四个3水平因子的例子。例2某矿物气体还原试验中,要考虑还原时间(A)、还原温度(B)、还原气体比 例(D)、气体流速(C)这四个因子对全铁合量 X越高越好)、金属化率丫(越高超 好)、二氧化钛含量Z(越低越好)这三项指标的影响。希望通过试验找出主要影 响因素,确定最适工艺条件。首先根据专业知以确定各因子的水平:时间:A1 = 3(小时),A2= 4(小时),A3= 5(小时)温度:B1= 1000(C),B2= 1100C),B3= 1200C)流速:Cl = 6

12、00(毫升/分),C2= 400(毫升/分),C3= 800(毫升/分)CO:H2 D1= 1:2,D2= 2:1,DA 1:1这是四因子3水平的多指标(X、Y、Z)问题,如果做全面试验需 34= 81次试验, 而用L9(34)来做只要9次。具体安排如表3。同全面试验比较,工作量少了 8/ 9。由于缩短了试验周期,可以提高试验精度, 时间越长误差于扰越大。并且对于多指标问题,采用简单对比法,往往顾此失 彼,最适工艺条件很难找;而应用正交表来设计试验时可对各指标通盘考虑,结论明确可靠。表g试验方案试验号水平组合|试验£ 条 件时间(彳谢)温度(P)流量壹升/分)COHj1AjQjCjD

13、j3IOOO(5C01: 22A此Cp311004C02: 1331200S00;144IODO400Is 26AjBjC jDj41200002: 11他 B1C3P25IOOO8IJ02i 18AjBgC D?511006001: 191512004001= 2返回4 试验数据的直观分析正交表的另一个好处是简化了试验数据的计算分折。还是以例1为例来说明按照表2的试验方案进行试验,测得9个转化率数据,见表4。表4转牝率试兹数据与计算令析因子试墟号温度时间加鐘试墟绪果水平12|34转化率()11(8 OU)1(皿分)储13121(8心2(120 豹2(6%)25431

14、(8DTC)3(150 分)艾7帰)33842(85®1(90 分)敬)35352(120 分)3(7%)149a2(8 5 T?)3(160)1狹)24273(9 01C)1分)3(7%)2578兀g兀)3(120 分3住9X901C)3(10*)K附)1I123L41135144II144165171153|III133斗144153414745405557岛1旳4®I 43R812S61811423418通过9次试验,我们可以得两类收获。第一类收获是拿到手的结果。第9号试验的转化率为64,在所做过的试验中最好,可取用之。因为通过L9(34)已经把试验条件均衡地打散到不

15、同的部位,代表性是好的。假如没有漏掉另外的重要 因素,选用的水平变化范围也合适的话,那么,这9次试验中最好的结果在全体可能的结果中也应该是相当好的了,所以不要轻易放过。第二类收获是认识和展望。9次试验在全体可能的条件中(远不止33= 27个组合, 在试验范围内还可以取更多的水平组合)只是一小部分,所以还可能扩大。精益 求精。寻求更好的条件。利用正交表的计算分折,分辨出主次因素,预测更好 的水平组合,为进一步的试验提供有份量的依据。其中I、U、川分别为各对应列(因子)上1、2、3水平效应的估计值,其计算 式是:Ii( n i,川i)=第i列上对应水平1 (2,3)的数据和K1为1水平数据的综合平

16、均=1 /水平1的重复次数Si为变动平方和=例1的转化率试验数据与计算分析见表 4。先考虑温度对转比率的影响。但单个拿出不同温度的数据是不能比较的,因为 造成数据差异的原因除温度外还有其他因素。但从整体上看,80 C时三种反应时间和三种用碱量全遇到了, 86°C时、90时也是如此。这样,对于每种温度 下的三个数据的综合数来说,反应时间与加碱量处于完全平等状态,这时温度 就具有可比性。所以算得三个温度下三次试验的转化率之和:80C:I A= xl+x2+x3 = 31+54+34 123;85C: n A= x4+x5+x6 = 53+49+42= 144;90C: 川 A= x7+x

17、8+x9 = 57+62+64= 183。分别填在A列下的I、n、川三行。再分别除以 3,表示80C、85C、90C时 综合平均意义下的转化率,填入下三行 Kl、K2、K3。R行称为极差,表明因子 对结果的影响幅度。同样地,为了比较反应时间;用碱量对转化率的影响,也先算出同一水平下的 数据和IB、nB, lc、n c、川c,再计算其平均值和极差。都填入表 4中;由此分别得出结论:温度越高转化率越好,以90 C为最好,但可以进一步探索温度更好的情况。反应时间以120分转化率最高。用碱量以6%转化率最高。 所以最适水平是A3B2C2返回5.正交试验的方差分析(一)假设检验在数理统计中假设检验的思想

18、方法是:提出一个假设,把它与数据进行对照,判断是否舍弃它。其判断步骤如下:(1)设假设Ho正确,可导出一个理论结论,设此结论为Ro;(2)再根据试验得出一个试验结论,与理论结论相对应,设为R1;比较R。与Rl,若R。与Rl没有大的差异,则没有理由怀疑 H。,从而判定 为:"不舍弃H。"(采用Ho );若R与R1有较大差异,则可以怀疑 H。,此时 判定为:"舍弃H。"。但是,R1/R。比I大多少才能舍弃H。呢?为确定这个量的界限,需要利用数 理统计中关于F分布的理论。若yl服从自由度为©1的x2分布,y2服从自由度为©2的分布,并且yl

19、、y2相互独立,则(yl/ © 1) /(y2/ © 2)服从自由度为(© 1,© 2)的F分布F分布是连续分布,分布模数是两个自由度(© 1,© 2)。称©1为分子自由度,称©2为分母自由度。在自由度为(© 1,© 2)的F分布中,某点右侧面积为p, 也就是F比此值大的概率为p,把这个值写为(p)。若检验的显著性水平(或危 险率)给定为a时,则可以把(a )作为临界值来检验假设。这里,Se/c2服从自由度为© e,的分布;当H。成立,c 2= 0时,SA/ (72也服从自由度为

20、69;A的x2分布;又SA与Se相互成立,所以(SA/( © Ac 2)/ Se/( © ec 2)=VA/Ve服从自由度为(© A,© e)的F分布。这就是假定 Ho正确 时的理论结论R。而试验结论RI要与理论结论R。相比较。由给定的显著性 水平,通常是 a= 0. 05;分子自由度 © 1=© A= a-l,分母自由度© 2=© e=a(n-1);查 F分布表得出(a )。所以 H°:a I = a 2=a a= 0( 7 A2 =0)的检验是:(显著性水平a)FA=VA/Ve> (a )舍弃 H。FA=VA/Vec ( a)不舍弃 H。通常,(a )般性地表示成Fa(© A, © B)。假设因子A对试验结果的影响不显著,那么 A的两个水平的效应该表现为相等 或相近,即假设H°:a 1 =a 2= 0。如果因子A显著,则舍弃假设。为了判断因子A是否显著,首先要计算比值 显然,这个比值越大,因子 A对指标的影响越显著;反之,因子 A就不显著。 在给定置信度a后,如a= 0.05,查F分布表,自由度©A是因子A的,自由 度©e是误差的,其临

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论