直线的方向向量与直线的向量方程PPT课件_第1页
直线的方向向量与直线的向量方程PPT课件_第2页
直线的方向向量与直线的向量方程PPT课件_第3页
直线的方向向量与直线的向量方程PPT课件_第4页
直线的方向向量与直线的向量方程PPT课件_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、3.23.2.1直线直线的方的方向向向向量与量与直线直线的向的向量方量方程程理解教材新知把握热点考向应用创新演练考点一考点二第第三三章章空空间间向向量量与与立立体体几几何何考点三知识点一知识点二考点四知识点三返回返回返回返回32.1直线的方向向量与直线的向量方程直线的方向向量与直线的向量方程返回返回返回返回问题问题1:当:当t确定时,点确定时,点P的位置是否被确定?的位置是否被确定?提示:确定提示:确定提示:提示:过点过点A且平行于向量且平行于向量a的一条直线的一条直线返回返回用向量表示直线或点在直线上的位置用向量表示直线或点在直线上的位置 (1)给定一个定点给定一个定点A和一个向量和一个向量

2、a,再任给,再任给一个实数一个实数t,以,以A为起点作向量为起点作向量 ta,这时点这时点P的位置被的位置被t的值完全确定当的值完全确定当t在实数在实数集集R中取遍所有值时,点中取遍所有值时,点P的轨迹是通过点的轨迹是通过点A且平行于且平行于 的一条直线的一条直线l,反之,在,反之,在l上任取一点上任取一点P,一定存在一个实数一定存在一个实数t,使,使 ,则向量方程,则向量方程通常通常称作直线称作直线l以以 的参数方程的参数方程 称为该直线的称为该直线的方向向量方向向量向量向量at为参数为参数向量向量aAP 返回返回返回返回 若直线若直线l1的方向向量为的方向向量为v1,直线,直线l2的方向向

3、量为的方向向量为v2,且且v1,v2. 问题问题1:若:若v1v2,则,则l1与与l2有什么关系?有什么关系? 提示:平行或重合提示:平行或重合 问题问题2:若直线:若直线l的方向向量的方向向量v与与v1,v2共面,且共面,且v1、v2不共线,则直线不共线,则直线l与平面与平面平行吗?平行吗? 提示:不一定,提示:不一定,l可能在可能在内内 问题问题3:若平面:若平面,则,则v1,v2与与什么关系?什么关系? 提示:提示:v1,v2.返回返回v1v2v1且且v2vxv1yv2返回返回 问题问题1:两条直线垂直,对应的方向向量垂直吗?:两条直线垂直,对应的方向向量垂直吗? 提示:垂直提示:垂直

4、问题问题2:两条直线所成的角:两条直线所成的角与两直线的方向向量的夹角与两直线的方向向量的夹角之间有什么关系?之间有什么关系? 提示:相等或互补提示:相等或互补返回返回 用向量运算证明两条直线垂直或求两条直线所成的角用向量运算证明两条直线垂直或求两条直线所成的角 设直线设直线l1和和l2所成的角为所成的角为,方向向量分别为,方向向量分别为v1和和v2,则则l1l2 ,cos v1v2|cosv1,v2|返回返回 1直线的方向向量不是唯一的,可以分为同向和直线的方向向量不是唯一的,可以分为同向和反向两类解题时,可以选取坐标最简的方向向量反向两类解题时,可以选取坐标最简的方向向量 2若直线若直线l

5、1,l2的方向向量平行,则包括的方向向量平行,则包括l1与与l2平平行和行和l1与与l2重合两种情况重合两种情况 3求异面直线所成的角时要注意范围求异面直线所成的角时要注意范围返回返回返回返回返回返回返回返回返回返回返回返回 一点通一点通此类问题常转化为向量的共线、向量的此类问题常转化为向量的共线、向量的相等解决,设出要求点的坐标,利用已知条件得关于要相等解决,设出要求点的坐标,利用已知条件得关于要求点坐标的方程或方程组求解即可求点坐标的方程或方程组求解即可返回返回1已知已知O为坐标原点,四面体为坐标原点,四面体OABC中,中,A(0,3,5),B(1,2,0),C(0,5,0),直线,直线A

6、DBC,并且,并且AD交坐标平面交坐标平面xOz于点于点D,求点,求点D的坐标的坐标返回返回返回返回 例例2已知正方体已知正方体ABCDA1B1C1D1的棱长为的棱长为2,E、F分别是分别是BB1、DD1的中点,求证:的中点,求证: (1)FC1平面平面ADE; (2)平面平面ADE平面平面B1C1F. 思路点拨思路点拨利用直线的方向向量以及线面平行,面面利用直线的方向向量以及线面平行,面面平行的条件证明平行的条件证明返回返回返回返回返回返回 一点通一点通 (1)证两条直线平行可转化为证明两直线的方向向量证两条直线平行可转化为证明两直线的方向向量平行平行 (2)用向量法证明线面平行:一是证明直

7、线的方向向用向量法证明线面平行:一是证明直线的方向向量与平面内的某一向量是共线向量且直线不在平面内;二量与平面内的某一向量是共线向量且直线不在平面内;二是证明直线的方向向量与平面内的两个不共线向量是共面是证明直线的方向向量与平面内的两个不共线向量是共面向量且直线不在平面内向量且直线不在平面内 (3)利用向量证明面面平行,可转化为证明线面平行利用向量证明面面平行,可转化为证明线面平行返回返回3在长方体在长方体ABCDA1B1C1D1中,中,AB4,AD3,AA1 2,P、Q、R、S分别是分别是AA1、D1C1、AB、CC1的中点的中点 证明:证明:PQRS.返回返回返回返回返回返回5.如右图,在

8、平行六面体如右图,在平行六面体ABCDA1B1C1D1中中E、F、G分别是分别是A1D1、D1D、D1C1的中点的中点求证:平面求证:平面EFG平面平面AB1C.返回返回返回返回 例例3在棱长为在棱长为a的正方体的正方体OABCO1A1B1C1中,中,E、F分别是分别是AB、BC上的动点,且上的动点,且AEBF,求证:,求证:A1FC1E.思路点拨思路点拨返回返回返回返回 一点通一点通利用向量法证明线线垂直往往转化为证明直利用向量法证明线线垂直往往转化为证明直线的方向向量垂直,即证明它们的方向向量的数量积为线的方向向量垂直,即证明它们的方向向量的数量积为0.证证明的关键是建立恰当的空间直角坐标

9、系,正确地表示出点的明的关键是建立恰当的空间直角坐标系,正确地表示出点的坐标进而求直线的方向向量坐标进而求直线的方向向量返回返回6正方体正方体ABCDA1B1C1D1中,中,E为为AC的中点,证明:的中点,证明:(1)BD1AC,(2)BD1EB1.返回返回返回返回返回返回返回返回 思路点拨思路点拨先建立空间直角坐标系,求出先建立空间直角坐标系,求出A1C与与AD1的方向向量再求出方向向量的夹角的余弦值,最后转化的方向向量再求出方向向量的夹角的余弦值,最后转化为异面直线为异面直线A1C与与AD1所成的角所成的角返回返回精解详析精解详析建立如图所示的空间直角坐标系,建立如图所示的空间直角坐标系,

10、返回返回返回返回 一点通一点通利用向量求异面直线所成角的步骤为:利用向量求异面直线所成角的步骤为: (1)确定空间两条直线的方向向量;确定空间两条直线的方向向量; (2)求两个向量夹角的余弦值;求两个向量夹角的余弦值; (3)确定线线角与向量夹角的关系:当向量夹角为锐角确定线线角与向量夹角的关系:当向量夹角为锐角时,即为两直线的夹角;当向量夹角为钝角时,两直线的时,即为两直线的夹角;当向量夹角为钝角时,两直线的夹角为向量夹角的补角夹角为向量夹角的补角返回返回返回返回返回返回8已知正四棱锥已知正四棱锥PABCD底面边长为底面边长为a,高,高PO的长也为的长也为a,E,F分别是分别是PD,PA的中点,求异面直线的中点,求异面直线AE与与BF所成角所成角的余弦值的余弦值解:解:如下图,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论