版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、三角形有关线段复习资料一 知识点归纳知识点一 三角形的相关概念1. 三角形:三条线段 不在同一直线上 首尾顺次相接2. 三角形有三条边,三个顶点,三个角。在同一个三角形内,每一条边都有一个对角;每一个角都有一条对边知识点二 三角形的分类1. 三角形按边分类可分成 不等边三角形 和 等腰三角形(等边三角形是一种特殊的等腰三角形)2. 三角形按角分类可分成 锐角三角形 钝角三角形 和直角三角形知识点三 三角形的三边关系三角形任意两边之和 第三边,任意两边之差 第三边知识点四 三角形的主要线段:角平分线、中线、高线如图所示,在ABC中,AE是中线,AD是角平分线,AF是高线则(1)BE = = (2
2、)BAD = = (3)AFB = = 90°知识点五 三角形的稳定性三角形具有稳定性;四边形不具有稳定性知识点1 三角形的边、角关系三角形任何两边之和大于第三边;三角形任何两边之差小于第三边;三角形三个内角的和等于180°;三角形三个外角的和等于360°;三角形一个外角等于和它不相邻的两个内角的和;三角形一个外角大于任何一个和它不相邻的内角。知识点2 三角形的主要线段和外心、内心三角形的角平分线、中线、高;三角形三边的垂直平分线交于一点,这个点叫做三角形的外心,三角形的外心到各顶点的距离相等;三角形的三条角平分线交于一点,这个点叫做三角形的内心,三角形的内心到三
3、边的距离相等;连结三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边且等于第三边的一半。知识点3 等腰三角形等腰三角形的识别:有两边相等的三角形是等腰三角形;有两角相等的三角形是等腰三角形(等角对等边);三边相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形。等腰三角形的性质:等边对等角;等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合;等腰三角形是轴对称图形,底边的中垂线是它的对称轴;等边三角形的三个内角都等于60°。知识点4 直角三角形直角三角形的识别:有一个角等于90°的三角形是直角三
4、角形;有两个角互余的三角形是直角三角形;勾股定理的逆定理:如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。直角三角形的性质:直角三角形的两个锐角互余;直角三角形斜边上的中线等于斜边的一半;勾股定理:直角三角形两直角边的平方和等于斜边的平方。 (4)三角形的主要线段的性质(见下表):名称基本性质角平分线三角形三条内角平分线相交于一点(内心);内心到三角形三边距离相等;角平分线上任一点到角的两边距离相等。中线三角形的三条中线相交于一点。高三角形的三条高相交于一点。边的垂直平分线三角形的三边的垂直平分线相交于一点(外心);外心到三角形三个顶点的距离相等。三角形复习 三角形的定
5、义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形._C_B_A三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC用符号表示为ABC,三角形ABC的边AB可用边AB所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示.注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)ABC是三角形ABC的符号标记,单独的没有意义 三角形的分类: (1)按边分类:三角形等腰三角形不等边三角形底边和腰不相等的等腰三角形等边三角形(2)按角分类:三角形直
6、角三象形斜三角形锐角三角形钝角三角形 三角形的主要线段的定义:(1)三角形的中线三角形中,连结一个顶点和它对边中点的线段表示法:1.AD是ABC的BC上的中线.2.BD=DC=BC.注意:三角形的中线是线段;三角形三条中线全在三角形的内部;三角形三条中线交于三角形内部一点;中线把三角形分成两个面积相等的三角形(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段表示法:1.AD是ABC的BAC的平分线.2.1=2=BAC.注意:三角形的角平分线是线段;三角形三条角平分线全在三角形的内部;三角形三条角平分线交于三角形内部一点;用量角器画三角形的角平分线(3)三角形
7、的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段表示法:1.AD是ABC的BC上的高线.2.ADBC于D.3.ADB=ADC=90°.注意:三角形的高是线段;锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;三角形三条高所在直线交于一点 三角形的主要线段的表示法:三角形的角平分线的表示法:如图1,根据具体情况使用以下任意一种方式表示: AD是DABC的角平分线; AD平分ÐBAC,交BC于D;ABCDE图1 如果AD是DABC的角平分线,那么ÐBAD=ÐDAC=ÐBAC. (2)三角形的中
8、线表示法:如图1,根据具体情况使用以下任意一种方式表示:AE是DABC的中线;AE是DABC中BC边上的中线;如果AE是DABC的中线,那么BE=EC=BC.图2 (3)三角线的高的表示法:如图2,根据具体情况,使用以下任意一种方式表示: AM是DABC的高; AM是DABC中BC边上的高; 如果AM是DABC中BC边上高,那么AMBC,垂足是E; 如果AM是DABC中BC边上的高,那么ÐAMB=ÐAMC=90°. 在画三角形的三条角平分线,三条中线,三条高时应注意: (1)如图3,三角形三条角平分线交于一点,交点都在三角形内部. (2)如图4,三角形的三条中线交
9、点一点,交点都在三角形内部.图4图3如图5,6,7,三角形的三条高交于一点,锐角三角形的三条高的交点在三角形内部,钝角三角形的三条高的交点在三角形的外部,直角三角形的三条高的交点在直角三角形的直角顶点上.图5图6图7三角形的三边关系 三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边 三角形的角与角之间的关系:(1)三角形三个内角的和等于180°图8(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.三
10、角形的内角和定理定理:三角形的内角和等于180°推论:直角三角形的两个锐角互余。推理过程:一、作CMAB,则4=1,而2+3+4=1800,即A+B+ACB=1800二、作MNBC,则2=B,3=C,而1+2+3=1800,即BAC+B+C=1800注意:(1)证明的思路很多,基本思想是组成平角(2)应用内角和定理可解决已知二个角求第三个角或已知三角关系求三个角三角形的外角的定义三角形一边与另一边的延长线组成的角,叫做三角形的外角.注意:每个顶点处都有两个外角,但这两个外角是对顶角.如:ACD、BCE都是ABC的外角,且ACD=BCE. 所以说一个三角形有六个外角,但我们每个一个顶点
11、处只选一个外角,这样三角形的外角就只有三个了.三角形外角的性质(1)三角形的一个外角等于它不相邻的两个内角之和(2)三角形的一个角大于与它不相邻的任何一个内角注意:(1)它不相邻的内角不容忽视;(2)作CMAB由于B、C、D共线 A=1,B=2. 即ACD=1+2=A+B. 那么ACD>A.ACD>B.8三角形的稳定性:三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性注意:(1)三角形具有稳定性;(2)四边形没有稳定性.适当添加辅助线,寻找基本图形(1)基本图形一,如图8,在DABC中,AB=AC,B,A,D成一条直线,则ÐDAC=2ÐB=2&
12、#208;C或ÐB=ÐC=ÐDAC.图9(2)基本图形二,如图9,如果CO是ÐAOB的角平分线,DEOB交OA,OC于D,E,那么DDOE是等腰三角形,DO=DE.当几何问题的条件和结论中,或在推理过程中出现有角平分线,平行线,等腰三角形三个条件中的两个时,就应找出这个基本图形,并立即推证出第三个作为结论.即:角平分线+平行线等腰三角形.基本图形三,如图10,如果BD是ÐABC的角平分线,M是AB上一点,MNBD,且与BP,BC相交于P,N.那么BM=BN,即DBMN是等腰三角形,且MP=NP,即:角平分线+垂线等腰三角形.当几何证题中出现角平
13、分线和向角平分线所作垂线时,就应找出这个基本图形,如等腰三角形不完整就应将基本图形补完整,如图11,图12. 知识点一:三角形1、三角形的定义:是由三条线段首尾顺次相接所组成的平面图形叫做三角形.2、组成三角形的元素:三条边和三个角3、三角形的分类三角形按边的关系分类如下:三角形按角的关系分类如下:把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形,它是两条直角边相等的直角三角形.4、三角形的性质三角形三边关系定理:三角形的任意两边之和大于第三边且任意两边之差小于第三边.三角形的内角和定理:三角形的三个内角和等于.三角形的外角和定理:三角形的三个外角和等于.三角形的内外角定理:互补关
14、系:三角形的一个外角与它相邻的内角互补;相等关系:三角形的一个外角等于和它不相邻的来两个内角的和.不等关系:三角形的一个外角大于任何一个和它不相邻的内角.三角形的边角关系:在同一个三角形中:大边对大角,等边对等角,小边对小角;反之,大角对大边,等角对等边,小角对小边也成立.5、三角形的面积:三角形的面积底高知识点二:等腰三角形 1、等腰三角形:有两条边相等的三角形叫做等腰三角形.2、等腰三角形的性质定理及推论:性质定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边.即等腰三角形的顶角平分线、底边上的中线、底边上的高三线合一.推论2:等边三角形的
15、各个角都相等,并且每个角都等于60°.3、三角形中的中位线三角形中的中位线:连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半;三角形中位线定理的作用:位置关系:可以证明两条直线平行;数量关系:可以证明线段的倍分关系;常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半;结论2:三条中位线将原三角形分割成四个全等的三角形;结论3:三条中位线将原三角形划分出三个面积相等的平行四边形;结论4:三角形一条中线和与它相交的中位线互相平分;结论5:三角形中任意两条中位线的夹角与这夹角所
16、对的三角形的顶角相等;知识点三:直角三角形 1、直角三角形的两个锐角互余;2、在直角三角形中,角所对的直角边等于斜边的一半;3、直角三角形斜边上的中线等于斜边的一半;4、直角三角形两直角边的平方和等于斜边的平方,即5、常用关系式:由三角形面积公式可得: 多边形及其内角和知识点知识点一:多边形及有关概念1、 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. 2、多边形的分类:(1)多边形可分为凸多边形和凹多边形 知识点二:正多边形各个角都相等、各个边都相等的多边形叫做正多边形。如正三角形、正方形、正五边形等。知识点三:多边形的对角线多边形的对角线:连接多边形不相邻的两个顶点的
17、线段,叫做多边形的对角线.(1) 从n边形一个顶点可以引(n3)条对角线,将多边形分成(n2)个三角形。(2)n边形共有条对角线。知识点四:多边形的内角和公式1.公式:边形的内角和为.知识点五:多边形的外角和公式1.公式:多边形的外角和等于360°. 知识要点梳理 定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。 凸多边形 分类1: 凹多边形正多边形:各边相等,各角也相等的多边形叫做正多边形。 分类2:多边形非正多边形:1、n边形的内角和等于180°(n-2)。 多边形的定理 2、任意凸形多边形的外角和等于360°。 3、n边形的对角线条数等于
18、1/2·n(n-3) 只用一种正多边形:3、4、6/。 镶嵌拼成360度的角 只用一种非正多边形(全等):3、4。知识点一:多边形及有关概念1、 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. (1)多边形的一些要素: 边:组成多边形的各条线段叫做多边形的边 顶点:每相邻两条边的公共端点叫做多边形的顶点 内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。(2)在定义中应注意: 一些线段(多边形的边数是大于等于3的正整数); 首尾顺次相连,二者缺一不可; 理解时要特别注意“在同一平面内”
19、这个条件,其目的是为了排除几个点不共面的情况,即空间 多边形. 2、多边形的分类:(1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这 条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图1).本章所讲的多边形都是指凸 多边形. 凸多边形 凹多边形 图1 (2)多边形通常还以边数命名,多边形有n条边就叫做n边形三角形、四边形都属于多边形,其中三角 形是边数最少的多边形知识点二:正多边形各个角都相等、各个边都相等的多边形叫做正多边形。如正三角形、正方形、正五边形等。 正三角形 正方形 正五边形 正六边形 正十二边形要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形知识点三:多边形的对角线多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD为四边形ABCD的一条对角线。要点诠释:(1)从n边形一个顶点可以引(n3)条对角线,将多边形分成(n2)个三角形。(2)n边形共有条对角线。证明:过一个顶点有n3条对角线(n3的正整数),又共有n个顶点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社区文明创建工作手册
- 建筑试验员面试技巧与高频问题
- 档案安全保密知识培训集
- 不动产登记代理人面试核心技
- 家用空调器维修工工艺技术规程
- 油气输送工职业健康技术规程
- 中药材购销员安全实践考核试卷含答案
- 宠物店长面试服务态度评估
- 2026年中国手机摄像头市场现状调查与前景趋势研究报告
- 2026年中国收割机行业全景调研及发展趋势研究报告
- 医院运营管理培训
- 静脉炎的处理原则课件
- 叉车司机三级试题+答案
- 儿童机械原理课件
- 卵巢黄体破裂课件
- (正式版)DB32∕T 5164-2025 《种植业农产品碳足迹量化方法与要求》
- 第18课 全民族抗战中的正面战场和敌后战场 课件 统编版八年级历史上册
- 2025年外事办公室韩语翻译笔试
- 甲状腺彩超课件
- 高三月考化学质量分析
- 2025年山西省、陕西省、宁夏、青海省四县区高考数学质检试卷(含答案)
评论
0/150
提交评论