圆锥曲线选择填空题_第1页
圆锥曲线选择填空题_第2页
圆锥曲线选择填空题_第3页
圆锥曲线选择填空题_第4页
圆锥曲线选择填空题_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1、(2017新课标2)9若双曲线的一条渐近线被圆所截得的弦长为,则的离心率为A B C D2、(2016新课标2)(11)已知F1,F2是双曲线E的左,右焦点,点M在E上,M F1与 轴垂直,sin ,则E的离心率为(A) (B) (C) (D)23、(2015新课标2)11已知A,B为双曲线E的左,右顶点,点M在E上,ABM为等腰三角形,且顶角为120°,则E的离心率为( )A B C D4、(2014新课标2)10.设F为抛物线C:的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则OAB的面积为( )A. B. C. D. 5、(2013新课标2)(

2、11)设抛物线y2=3px(p0)的焦点为F,点M在C上,|MF|=5若以MF为直径的园过点(0,3),则C的方程为(A)y2=4x或y2=8x (B)y2=2x或y2=8x(C)y2=4x或y2=16x (D)y2=2x或y2=16x6、(2012新课标2)(4)设是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为( ) 7、(2012新课标2)(8)等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为( ) 8、(2011新课标2)(10)已知抛物线C:的焦点为F,直线与C交于A,B两点则=(A) (B) (C) (D)9、(2011新课标2)(15

3、)已知F1、F2分别为双曲线C: - =1的左、右焦点,点AC,点M的坐标为(2,0),AM为F1AF2的平分线则|AF2| = .10、(2017新课标1)10已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A16B14C12D1011、(2017新课标1)15已知双曲线C:(a>0,b>0)的右顶点为A,以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点。若MAN=60°,则C的离心率为_。12、(2016新课标1)(5)已知方程表示双曲线,

4、且该双曲线两焦点间的距离为4,则的取值范围是 (A)(,) (B)(,) (C)(,) (D)(,)13、(2016新课标1)(10)以抛物线的顶点为圆心的圆交于,两点,交的准线于,两点已知,则的焦点到准线的距离为(A)2 (B)4 (C)6 (D)814、(2015新课标1)(5)已知M(x0,y0)是双曲线C: 上的一点,F1、F2是C上的两个焦点,若0,则y0的取值范围是(A) (-,)(B)(-,)(C)(,) (D)(,)15、(2015新课标1)(14)一个圆经过椭圆的三个顶点,且圆心在x轴上,则该圆的标准方程为 。16、(2014新课标1)4.已知是双曲线:的一个焦点,则点到的一

5、条渐近线的距离为. .3 . .17、(2014新课标1)10.已知抛物线:的焦点为,准线为,是上一点,是直线与的一个焦点,若,则=. . .3 .218、(2013课标全国)(4)已知双曲线C:(a0,b0)的离心率为,则C的渐近线方程为()Ay By Cy Dy±x19、(2013课标全国,理10)已知椭圆E:(ab0)的右焦点为F(3,0),过点F的直线交E于A,B两点若AB的中点坐标为(1,1),则E的方程为()A B C D20、(2012课标全国)(4)设是椭圆的左、右焦点,为直线上的一点,是底角为的等腰三角形,则的离心率为(A) (B) (C) (D) 21、(2012课标全国)(8)等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,则的实轴长为(A) (B) (C)4 (D)822、(2011课标全国)(7)设直线L过双曲线C的一个焦点,且与C的一条对称

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论