




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1. 如图, D,E分别是ABC边AB,BC上的点,AD2BD,BECE,若,则四边形BEFD的面积为( )2如图,在ABCD中,ABC,BCD的平分线BE,CF分别与AD相交于点E、F,BE与CF相交于点G,若AB=3,BC=5,CF=2,则BE的长为( )3.如图,P为平行四边形ABCD边AD上一点,E、F分别是PB、PC(靠近点P)的三等分点,PEF、PDC、PAB的面积分别为S1、S2、S3,若AD=2,AB=2,A=60°,则S1+S2+S3的值为( )4.如图,已知矩形ABCD,AB=6,BC=8,E,F分别是AB,BC的中点,AF与DE相交于I,与BD相交于H,则四边形
2、BEIH的面积为( )5. 如图,DE是ABC的中位线,M是DE的中点,CM的延长线交AB于点N,则SDMN:S四边形ANME等于( )6.如图,在ABC中,ABAC1,BC,在AC边上截取ADBC,连接BD(1)通过计算,判断与AC·CD 的大小关系;(2)求ABD 的度数7.如图4,ABC与DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为( )8.如图,已知ABC是面积为的等边三角形,ABCADE,AB=2AD,BAD=45°,AC与DE相交于点F,则AEF的面积等于 (结果保留根号)9如图,ABC中,AB=AC,D为BC中点,在BA的延长线上取一点E,使
3、得ED=EC,ED与AC交于点F,则的值为( )10.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按ABC的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( )A B C D11如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是( )A B C D12如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O则下列结论ABF
4、CAE,AHC=120°,AH+CH=DH,AD2=ODDH中,正确的是 13如图,在矩形ABCD中,AD=6,AEBD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为( )13.如图,在矩形ABCD中,AC与BD相交于O,COD=60°,点E是BC边上的动点,连结DE,OE(1)求证:COD是等边三角形;(2)如图1,当DE平分ADC时,试证明OC=EC,并求出DOE的度数;(3)如图2,当DE平分BDC时,试证明14.问题背景已知在ABC中,AB边上的动点D由A向B运动(与A、B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不
5、与C重合),连接DE交AC于点F,点H是线段AF上一点(1)初步尝试如图1,若ABC是等边三角形,DHAC,且点D,E的运动速度相等求证:HF=AH+CF小王同学发现可以由以下两种思路解决问题:思路一:过点D作DGBC,交AC于点G,先证GH=AH,再证GF=CF,从而证得结论成立;思路二:过点E作EMAC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分);(2)类比探究如图2,若在ABC中,ABC=90°,ADH=BAC=30°,且点D,E的运动速度之比是:1,求的值;(3)延伸
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 应急安全培训证课件
- 应急安全培训活动课件
- 应急安全培训企业培训课件
- 2024职称计算机考前冲刺试卷附参考答案详解【培优A卷】
- 秋季腹泻患儿辅食调整方案与喂养指导
- 非开挖施工合同(标准版)
- 建筑商合同(标准版)
- 租用香菇大棚合同(标准版)
- 2025年教育信息化2.0背景下教师信息技术与课程资源整合能力培养策略研究报告
- 2025年智慧校园安全管理报告:校园安全风险防控策略研究
- 人才服务合同书
- 2025-2026学年统编版八年级上册道德与法治教学计划含教学进度表
- 2025年工会入职考试试题及答案
- 2025年中国电力投资集团校园招聘笔试题型分析及备考策略
- 旅游服务安全知识培训课件
- 公司章程制定合同协议书范本模板
- 2024人教PEP版三年级英语上册全册教案
- 中国慢性胃炎诊治指南(2022年)解读
- 立体车库应急预案范文
- 体彩专管员专业知识培训课件
- 严重腹部创伤院内救治专家共识(2024)解读
评论
0/150
提交评论