




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.F2F1yox.xF1F20y.椭圆、双曲线的方程椭圆、双曲线的方程(各取一种情况)、性质的对比各取一种情况)、性质的对比. 椭圆椭圆双曲线双曲线几何条件几何条件标准方程标准方程顶点坐标顶点坐标 对称轴对称轴焦点坐标焦点坐标 离心率离心率准线方程准线方程渐近线方程渐近线方程012222babyax与两个定点的距离的和与两个定点的距离的和等于常数等于常数.与两个定点的距离的差与两个定点的距离的差的绝对值等于常数的绝对值等于常数.0012222babyax,ba,000,abyax22短轴长短轴长轴,轴,长轴长长轴长轴,轴,byax22虚轴长虚轴长轴,轴,实轴长实轴长轴,轴,220bacc,22
2、0bacc,10 e1ecax2cax2xaby焦点访谈焦点访谈找出下列椭圆或双曲线的焦点坐标找出下列椭圆或双曲线的焦点坐标. 0225259122yx192522yx准方程准方程分析:将原方程变为标分析:将原方程变为标,92522ba16222bac即即 .0404,焦点坐标为焦点坐标为 03694222yx材料一:材料一:焦点位置焦点位置19422xy准方程准方程分析:将原方程变为标分析:将原方程变为标,9422ba13222bac即即 .130130,焦点坐标为焦点坐标为11222mymx已知方程已知方程表示焦点在表示焦点在x轴上的双曲线,求轴上的双曲线,求m的范围的范围.分析:分析:,
3、0102mm.轴上轴上时双曲线焦点在时双曲线焦点在 xm1表示焦点在表示焦点在x轴上的椭圆轴上的椭圆 ,求,求m的范围的范围.分析:分析:,120102mmmm.轴上轴上时椭圆焦点在时椭圆焦点在 xm123判断焦点位置判断焦点位置.,的系数的系数化为标准方程,观察化为标准方程,观察22yx共同点:共同点:差异:差异:椭圆看大小,双曲线看符号椭圆看大小,双曲线看符号.探索:探索:.,点三角形点三角形为此椭圆或双曲线的焦为此椭圆或双曲线的焦,则称,则称长轴或实轴端点除外长轴或实轴端点除外双曲线上一点双曲线上一点是椭圆或是椭圆或焦点,焦点,为椭圆或双曲线的两个为椭圆或双曲线的两个设设2121FPFP
4、FF焦点三角形焦点三角形.,点三角形点三角形为此椭圆或双曲线的焦为此椭圆或双曲线的焦,则称,则称长轴或实轴端点除外长轴或实轴端点除外双曲线上一点双曲线上一点是椭圆或是椭圆或焦点,焦点,为椭圆或双曲线的两个为椭圆或双曲线的两个设设2121FPFPFF焦点三角形焦点三角形._212122214812449PFFPFPFPyxFF,则,则椭圆上且满足椭圆上且满足在在的两个焦点,的两个焦点,是椭圆是椭圆,已知已知材料二:材料二:xF1F20y.P._21212221601169PFPFPFFPyxFF,则,则双曲线上且满足双曲线上且满足在在的两个焦点,的两个焦点,是双曲线是双曲线,已知已知类比:类比:
5、6490y.F2F1oxP.,设,设长轴端点除外长轴端点除外是椭圆上一点是椭圆上一点焦点,焦点,的两个的两个是椭圆是椭圆,已知已知 2122222101PFFPbabyaxFF)(探索:探索:类比:类比:,)(,实轴端点除外实轴端点除外是双曲线上一点是双曲线上一点的两个焦点,的两个焦点,是双曲线是双曲线,已知已知PbabyaxFF001222221 cos122b cos122b共同点:共同点:.中利用余弦定理求解中利用余弦定理求解都是在都是在21FPF差异:差异:;椭圆椭圆aPFPF221.aPFPF221双曲线双曲线._21PFPF则则._2121PFPFPFF,则,则设设 xF1F20y
6、.P. 焦点弦焦点弦材料三:材料三:.的长的长两点,求弦两点,求弦、交椭圆于交椭圆于的右焦点,的右焦点,过椭圆过椭圆的直线的直线已知斜率为已知斜率为ABBAyxl12122分析:分析:.,2211yxByxABA坐标分别为坐标分别为、设设,方程为方程为,右焦点右焦点101xylF,由由22122yxxy.0432 xx得得.,0342121xxxx2121xxkAB21221241xxxxk324xyF0.AB思考:思考:以线段以线段AB为直径的圆,与椭圆相应准线是何位置关系?为直径的圆,与椭圆相应准线是何位置关系?.P相离相离.Fyox.AB.P 以过椭圆的焦点的弦为直径的圆,和该以过椭圆的
7、焦点的弦为直径的圆,和该焦点相应准线是何位置关系?焦点相应准线是何位置关系?类比:类比: 以过双曲线的焦点的弦为直径的圆,和以过双曲线的焦点的弦为直径的圆,和该焦点相应准线是何位置关系?该焦点相应准线是何位置关系?探索:探索:相交相交P.AB.xF0y.mnd共同点:共同点:利用第二定义解题利用第二定义解题.差异:差异:.,110ee双曲线双曲线椭圆椭圆相离相离三、小结提高三、小结提高焦点位置焦点位置访谈核心访谈核心知识知识方法方法思想思想焦点弦焦点弦焦点焦点焦点三角形焦点三角形椭圆、双椭圆、双曲线的方曲线的方程、性质程、性质四、作业四、作业1、课本复习参考题八的、课本复习参考题八的8、9、1
8、0.2、试给出访谈二中,与焦点三角形有关问题的、试给出访谈二中,与焦点三角形有关问题的一个探索一个探索.探索:探索:以过椭圆的焦点的弦为直径的圆,和该焦以过椭圆的焦点的弦为直径的圆,和该焦点相应准线是何位置关系?点相应准线是何位置关系?以过双曲线的焦点的弦为直径的圆,和该以过双曲线的焦点的弦为直径的圆,和该焦点相应准线是何位置关系?焦点相应准线是何位置关系?类比:类比:22120121211006460yxFFPF PFF PF.已已知知 ,是是椭椭圆圆的的两两个个焦焦点点, 是是椭椭圆圆上上任任一一点点,且且,求求的的面面积积分析:分析: 由探索由探索1可知可知 cos12221bPFPF601642cos3256212121
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 业务连续性与风险策略考题及答案
- 2023-2025北京高二(上)期末数学汇编:常用逻辑用语(人教B版)
- 高中跨学科教学策略与实施路径探讨
- 废水处理站EPC总承包项目可行性分析报告
- 高三数学高效复习技巧试题及答案
- 信息处理技术员考试策略与技巧题及答案
- 钢厂安全事故心得体会(7篇)
- 计算机二级VB课程内容详细概述题及答案
- 高考数学高频练习题及答案
- 加油站股份协议书
- 温岭市国企招聘考试真题及答案
- 歌曲《我们》歌词
- GB/T 3301-2023日用陶瓷器规格误差和缺陷尺寸的测定方法
- 物理人教版(2019)必修第三册闭合电路的欧姆定律
- 汽车前保险杠结构及安全能分析学士学位参考
- 2023年山东省青岛市中考数学试卷
- 数学北师大版五年级下册相遇问题PPT
- 电力企业安全风险分级管控和隐患排查治理双重预防体系规范
- MT 191-1989煤矿井下用橡胶管安全性能检验规范
- GB/T 6416-1986影响钢熔化焊接头质量的技术因素
- GB/T 5650-1985扩口式管接头空心螺栓
评论
0/150
提交评论