



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、武汉理工大学考试试题( B 卷)课程名称 概率论与数理统计专业班级 06级(余区)题号一二三四五六七八九十总分题分151552108100 备注: 学生不得在试题纸上答题(含填空题、选择题等客观题)一、单项选择题(本题共5小题,每小题3分,共15分。)1一射手向目标射击3 次,表示第次射击中击中目标这一事件,则3次射击中至多2次击中目标的事件为( ):2. 袋中有10个乒乓球,其中7个黄的,3个白的,不放回地依次从袋中随机取一球。则第一次和第二次都取到黄球的概率是( ); ; ; ; 3. 设随机变量的概率密度为且 ,则有( ); 4设,为的一个样本, 下列各项为的无偏估计,其中最有效估计量为
2、( )。 5. 设是来自总体的一个样本,对于已知和未知时的期望的假设检验,应分别采用的方法为( )。 A U检验法和T检验法 B T检验法和U检验法 C U检验法和检验法 D T检验法和F检验法二、填空题(本题共5小题,每小题3分,共15分。)1. 若X服从自由为n的t分布,则X2服从自由度为 , 的F分布。2在长度为的时间间隔内到达某港口的轮船数服从参数为的泊松分布,而与时间间隔的起点无关(时间以小时计)某天12时至15时至少有一艘轮船到达该港口的概率为 。3设相互独立,且同服从于参数为的指数分布,则的分布函数为: 4设随机变量X与Y相互独立,且,则= 5从服从正态分布的的总体中抽取容量为9
3、的样本,样本均值,样本标准差为,则总体均值的置信水平为95%的置信区间为 三、计算下列各题(14小题每题8分,5、6小题每题10分,共52分)1. 设事件A发生的概率为p ,那么在n次独立重复试验中,事件A发生多少次的概率最大?2. 据统计男性有5%是患色盲的,女性有0.25%的是患色盲的,今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少?3. 由100个相互独立起作用的部件组成的一个系统在运行过程中,每个部件能正常工作的概率为90% 为了使整个系统能正常运行,至少必须有85%的部件正常工作,求整个系统能正常运行的概率4. 设随机变量在区间上服从均匀分布,求随机
4、变量的概率密度5. 设随机变量在上服从均匀分布,其中由轴轴及直线所围成, 求的边缘概率密度, 计算。6. 某工厂生产的设备的寿命(以年计)的概率密度为工厂规定,出售的设备若在一年之内损坏可予以调换若出售一台设备可赢利150元,调换一台设备厂方需花费300元,试求厂方出售一台设备净赢利的数学期望四、(10分)总体的概率密度为,是来自总体的样本,分别用矩估计法和极大似然估计法求的估计量.五、(8分) 若某地区一天出生的婴儿人数服从参数为的泊松分布,以表示其中男婴的个数,每一新生婴儿为男性的概率是,求:(1) 已知某一天出生的婴儿人数为,其中有个是男婴的概率(2) 与的联合概率分布(3) 的概率分布律附:;。 武汉理工大学教务处试题标准答案及评分标准用纸课程名称 概率论与数理统计 ( B 卷)一1C; 2.A; 3.D; 4.B; 5.A。二 11,n; 2; 3 ; 4 5。三1. 设A发生次概率最大,因A发生次数X服从二项分布B(n,p),,故,解得 8分;2.设,已知 ,则有 8分;3. 令. 则有,相互独立. 3分;于是 . 8分;4. 当时, ; 3分;当时,;当时,。 5分;于是, 8分;5. 的联合概率密度为 (1) , 5分; 。 10分;6. 设赢利为,则有 4分; . 10
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建材物流园工程可行性研究报告(参考)
- 国际冷链物流产业园扩建项目可行性研究报告(范文模板)
- 河南省开封市五县联考2023-2024学年高二上学期12月月考历史含解析
- 重庆第二师范学院《中级法语(二)》2023-2024学年第二学期期末试卷
- 平顶山学院《有机化学实验一》2023-2024学年第二学期期末试卷
- 广东茂名健康职业学院《节目策划通论》2023-2024学年第二学期期末试卷
- 四川信息职业技术学院《纳米工程导论》2023-2024学年第二学期期末试卷
- 湖南化工职业技术学院《体育赛事组织》2023-2024学年第二学期期末试卷
- 南阳科技职业学院《环境科学前沿》2023-2024学年第二学期期末试卷
- 贵州交通职业技术学院《网络与新媒体》2023-2024学年第二学期期末试卷
- 《智能家居系统》课件
- 注射相关感染预防与控制(全文)
- 浙江省温州市2021-2022学年高一下学期期末语文试题
- 乙二醇安全技术说明书MSDS
- 一年级数学上册 20以内的减法玩扑克做数学教案 新版冀教版
- 新开模具开发进度表
- 华为性格测试攻略
- 小学二年级下册美术课件-4.13大花瓶-岭南版(9张)ppt课件
- 项目部汛期工点及驻地风险评估报告
- 罗宾斯《管理学》第15章理解群体与团队
- 工程项目部各类型结算单(模板)
评论
0/150
提交评论