#06第六章提升运输通风排水压风制氮设备099_第1页
#06第六章提升运输通风排水压风制氮设备099_第2页
#06第六章提升运输通风排水压风制氮设备099_第3页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第六章 提升、通风、排水、压风和制氮设备6.1 提升设备6.1.1 概述本矿井设计生产能力为6.0Mt/a初期能力为3.0Mt/a在矿井工业场地设有一个主平 硐、一个副平硐。另有一个回风斜井布置在井田东部4-2 号煤层火烧区边界附近。主平硐装备一台钢丝绳芯带式输送机担负矿井原煤的运输任务。 副平硐采用无轨胶轮车担负 全矿材料、设备、人员等辅助运输任务。设计矿井年工作日330d,每天净提升时间为1666.1.2 主平硐运输设备带式输送机具有运输能力大、能实现连续运输、自动化程度高等优点,故本设计主 平硐确定采用带式输送机运输。根据井下开拓开采布置,从采煤工作面至大巷带式输送机、煤流连续运输,根据

2、工 作面数量及生产能力、煤流系统的协调能力 ,主平硐、 5-2煤大巷带式输送机运量确定为 2500t/h结合井下工作面生产能力大的特点,考虑生产因素和工作面的峰值煤量,来确 定胶带机的带宽、带速、 输送 带强度等技术参数。主平硐带式输送机主要技术参数为:B=1400mm Q=2500t/h V=4m/s S =-1.34898 -0.1719 0°, L=2956.255m St1600钢 丝绳芯阻燃 输送带,采用双滚筒双驱动方式布置, 功率分配 1:1,配 YBPT450-,4N=630kW 防爆电动机二台、SEW-M3PSF100-20.0型减速器二台,采用“交-直-交”变频驱动

3、。设 有盘形闸制动装置及头部液压自动拉紧装置(防爆)各一套。(一)设计依据(按Q=2500t/h选型计算)矿井生产能力6.00Mt/a带式输送机运量Q=2500t/h带式输送机带宽B=1400mm主平硐井筒倾角S=-1.34898°-0.1719°0°带式输送机长度L 2956.255m煤的松散容重p =950cg/m3带式输送机工作制度330d/a 、 16h/d二)带式输送机选型计算1圆周驱动力的计算根据带式输送机的实际工作条件及国内设备生产厂家的加工水平, 同时考虑到现场的管理水平等因素后,确定采用并计算出如下参数:f= 0.028卩=0.30V= 4.0m

4、/sSt1600N/mm托辊运行阻力系数 传动滚筒摩擦系数 带式输送机最大提升速度 初选胶带强度 每米物料重量 每米胶带重量 上托辊每米长转动部分重量 下托辊每米长转动部分重量 系数 主要阻力 主要特种阻力 附加特种阻力 倾斜阻力 传动滚筒所需圆周驱动力qG= 173.61kg/mcb = 48.30kg/m qRO=29.10kg/m qRU=10.85kg/mC= 1.04Fh= 300565NFn= 17907NFsi= 14341NFst= -112259NFu = Fh+FN+FS什Fst=220554 N2电动机功率 带式输送机稳定运行时传动滚筒所需运行功率:Pa= Fu X V/

5、1000= 883kW带式输送机驱动电动机功率:Pm= Pa/ n 1= 1081kW式中:n 1驱动系统正功率运行时的传动效率。n 1=0.8158为此,选择2台630kWYBPT450-4电动机。3输送带张力计算主平硐带式输送机采用头部双滚筒传动,功率配比 1: 1。根据输送机的布置形式确定第一传动滚筒的围包角 巾1= 190 ,第二传动滚筒围包角 巾2= 190。设Fai、FA2分别 为第一和第二传动滚筒圆周力,Fi、Fi-2和F2分别为第一和第二传动滚筒处的输送带绕 入点和绕出点的张力,F3、F4分别为尾轮处的输送带张力,Fa为起动状态传动滚筒圆周 力。其中Fa=FuX KaKa为启动

6、系数,取值Ka=1.20第一传动单元滚筒上圆周力 Fa仁KAX 1/2FA = 132332N第二传动单元滚筒上圆周力 FA2= KAX1/2FA =132332N设第二传动滚筒e2值用足时,贝F2= Fa2/ (e2 1)= 77709NF1= FA F2= 298263NF1-2= F2FA2= 187986NF3=F4=177889NF1/F1-2W e"巾1F1-2/F2< e"巾2故按不打滑条件验算,张力满足要求。 再按垂度条件验算上、下分支最小张力:F 上 min=g(p+CB)X au/(8X 0.01)=32654NF 下 min=g(G+cB)x a

7、c/(8X 0.01)=17768N由 F3=F4> F 上 min > F 下 min 满足垂度验算最后计算输送带的安全系数:n=BX St/F1=7.57<n<9 输送带安全系数满足要求。4驱动装置设备选型 由于主平硐带式输送机运输距离较长、运输能力大,为降低起动和紧急制动时 输送 带的动张力, 减少起动时对电网的冲击和起动过程中各承力部件的动载荷, 延长减速器、 电动机等关键部件的使用寿命, 实现电机间的功率平衡, 应对带式输送机的起 /制动加速 度进行控制,因此驱动装置必须具有软起 /停功能。根据国内同类设备生产现状及现有生产矿井的实际使用情况, 设计对带式输送

8、机的驱动方式进行了 CST可控起/停驱动、交-直-交变频调速驱动等方案比较。CST可控起/ 停驱动装置和交 -直-交变频调速驱动装置都能满足本条带式输送机的使用要求。从价格 方面看,二者的初期投资基本在同一价位,但如计入土建工程投资和由于变频产品更新 换代快所带来的额外投资,CST在总体价格方面可相对降低。从功能方面看,在带速和 运输量调节性能上,交 -直-交变频调速驱动装置适应能力较好,当负载经常变化时,交-直-交变频调速驱动装置节能效果明显, 所以比选后确定主平硐带式输送机驱动装置选用 “交-直-交”变频调速驱动装置。另对电动机的电压等级进行了低压(1140V或660V和中高压(3300V

9、及以上)的 方案比选后,采用低压电动机比高压电动机价格低约30%,变频器的价格低 50%以上。故本次设计采用低压电动机。考虑到660V是一个国际通用电压等级,国内外多家厂商做此变频器,该电压下, 电动机功率最大可到1000kW在平朔煤矿有710 kW的皮带用变频电机已运行了几年。 考虑到本项目电机功率是 630 kW 所以电机电压选用660 V根据煤矿安全规程和带式输送机工程设计规范的规定, 主平硐带式输送 机装备一套SHI252型低速轴盘形闸制动器。为保证操作人员和行人安全, 在主平硐带式输送机驱动装置和滚筒处设置安全防护 设施,在拉紧装置两侧和机尾处设置安全护网和护栏。另为便于设备维修主平

10、硐带式输 送机上设置一些人行过桥。5带式输送机的保护与供电 在主平硐选用一套集监测、控制、信号、通信为一体的带式输送机监控系统,为分 级分布式结构,具有较高的运行可靠性和使用灵活性,显示功能强,联网方便,设有驱 动滚筒打滑、堆煤、跑偏、温度、烟雾、防胶带撕裂、 输送带 张力下降、电动机过载、 电机超温等多项保护装置,满足煤矿安全规程的有关规定,并能与井上下的其他胶 带输送机实现闭锁集中控制。6拉紧装置选型拉紧装置放在头部。采用液压拉紧装置。拉紧装置型号为ZLY-02-3207输送带选型采用阻燃型钢丝绳芯输送带。带强St1600属常规档次带强,国内供货质量能满足要 求。考虑到使用环节的重要性及国

11、内接头工艺水平,设计强调:今后在本胶带输送机的 安装过程中,应加强对胶带接头硫化的质量控制和检测,以确保接头强度满足有关规定 的要求。主平硐带式输送机技术特征见表6.1-1。主平硐带式输送机技术特征表 6.1-1序 号名称单位内容备注1运输量t/h25002运输物料原煤3运输物料容重t/m314速度m/s4.05输送机长度m2956.2556输送机角度-1.3489 -0.1719 0°7输送带宽度mm1400带强N/mmSt1600 (阻燃)8电动机型号YBPT450-42台功率kW630转速r/min14809减速器型号SEW-M3PSF100-20.000 2台10制动器型号S

12、HI252 1套11液压自动张紧装置型号ZLY-02-3201 台6.2通风设备本矿井为低瓦斯矿井,煤尘有爆炸危险性,煤层有自然发火倾向。矿井初期通风方 式为中央分列抽出式通风。由主、副平硐进风,回风斜井回风,服务于一盘区,服务年 限约30a。回风斜井井口标高+1155m6.2.1设计依据初期风量:Q初=125m3/sQ后=175m3/s后期风量初期矿井阻力:H初二969Pa后期矿井阻力:H / =2907Pa6.2.2通风机风量、风压计算考虑通风设施漏风和风道局部阻力损失后,回风斜井的风量、阻力为:初期风量:Q初二KQ初=1.05 1 2定13 13m3/s后期风量:Q后=KQ后 =1.05

13、 1 71 8 38m3/s初期矿井阻力:H初=(H初 .H) 心/。=(969 237) 1.2931/1.2788 "219Pa后期矿井阻力:H后=(H后:H) / 6 二(2907 237) 1.2931/1.2788 二 3179Pa式中:K 通风设备漏风系数,取1.05;H 风道阻力之和,计算值为237Pa。P 0 标准状况空气密度 取1.2931 kg/用P 1 风井井口空气密度 取1.2788kg/m。通风网路特性曲线方程:2121922H 初二 R初Q22Q2 = 0.0707Q2131.32317922H 后二R后Q2Q -0.0941Q183.86.2.3设备选型

14、设计曾考虑过选用离心式风机,该型式风机与轴流式风机相比,由于反风需要专设 反风道及反风闸门等一系列设施,增加了反风道的投资,土建施工量大,且风门多,在 冬季容易出现风门被冻住的问题,其风量调节方式为采用前导叶调节,属于截流式调节, 不利于风机的经济运行,故设计推荐选用轴流式矿井通风机。根据矿井回风量、矿井阻力,以及在国内得到广泛应用的轴流通风设备使用情况和 性能,设计对回风斜井通风设备的选型考虑了两个方案,方案比较见表6.2-1。通风设备选型方案比较表表 6.2-1内容万案一方案一(推存)通风机型号GAF25-12.5-1FBCDZ NO28/Z 450台数22叶片调节方式停机机械一次调节叶片

15、人工逐个调节初期工况点参数流量(m3/s)131.3131.3静压升(Pa)12191219静压效率()6072轴功率(kW)266.7222.3叶片角度-6 °34°后期工况点参数流量(m3/s)183.8183.8静压升(Pa)31793179静压效率()8084轴功率(kW)730.4696.0叶片角度3°34°电动机型号Y710L-6YBF 560M2-8功率 (kW)10002 >450电压(kV)1010转速(r/min)985740年运行费用(万元)260( +40)220 (± 0.00)投资设备+电控(万元)254+11

16、0265.8+150土 建(万元)20080合 计(万元)564( +68.2)495.8 (± 0.00)备注:以上比较表中的设备价为公司参考报价,投资中未包括安装费。方案一选用的GAF25-12.5-型轴流式矿井通风机是80年代引进TLT公司技术,由上 海鼓风机厂生产的,质量体系完善,工装器具齐全,制造质量较好;采用停机一次性整 体调节叶片方式,风机叶片调节方便;采用停机调节叶片反风,反风量大;产品配带消 音器、箱式风门、轴承润滑站、喘振报警装置、通风测定装置等,成套性强;风机品种 规格齐全,按“量体裁衣”的方式选择风机;风机运行噪声较小;但由于主电机安装在 出风侧,传动轴需穿过

17、扩散塔与风机叶轮连接,其尺寸较长,安装对中困难,同时扩散 塔较高,为避免基础的不均匀下沉,基础处理难且工程量大;需建机房、扩散塔等,风 道长,占地面积较大;安装调试复杂,施工周期长,装置设备多、维护量稍大;反风时 需调节叶片角度,操作时间长。方案二选用的FBCDZ NO28/2 450型矿用防爆对旋轴流式通风机,属国内 90年代中 期开发的新产品,已在国内矿井得到大量的应用,其两级叶轮既是工作轮又互为导叶, 提高了风机运行效率,通风机设有回流环,有效地消除了喘振;可配变频电机变频调节 风机转速,以适应矿井不同期间对通风的需要;采用反转反风并带防爆制动器,反风量 较大,反风时间较短;配带风门、消

18、音器、扩散筒,安装简单、施工周期短,维护工作 量小;不需建风机房、可露天布置,安装时间短。但由于通风机电动机安装在风机轮毂 内,叶轮安装在电动机轴上,需要装设防爆电动机,电动机散热较差,电动机维护较复 杂。另外,风机露天安装其外壳及连接件锈蚀较严重。经对以上 2种风机的技术性能、 安装方式、结构设计、运行效率、维护特点、投资、 年运行费用等方面进行了综合比较后,设计推荐方案二。即选用FBCDZ NO28/2X 450型轴流式通风机2台,1台工作,1台备用。每台风机配2台YBF560M2-型矿用隔爆型电 机(450kW 740r/min 10k"。由于初、后期的负压相差较大,为使风机在

19、初、后期都能在高效区节能运行,本设 计采用初期单级运行的方式。通风机性能曲线及反风曲线见图 6.2-1 及图 6.2-2。初期工况点参数为(单级运行):叶片角度34°风量131.3n3/s、风压1219Pa效率 72% 轴功率 222.3kW。后期工况点参数为:叶片角度 34°、风量183.8n3/s、风压3179Pa效率84%轴功图 6.2-1图 6.2-2率 696.0kW。初期反风工况点参数为(单级运行) :叶片角度 34° 风量 98n3/s 风压 690Pa 效 率 38% 轴功率 177.9kW。后期反风工况点参数为:叶片角度 34° 风量

20、146n3/s 风压 1310Pa 效率 40% 轴 功率 478kW。6.2.4 附属设施通风机为为露天安装,为提高通风机的使用寿命,通风机的外壳应进行防腐处理, 所有联接螺栓均采用不锈钢螺栓。 在通风机的集风器前和扩散器侧壁应设置密闭性能良好的检修门, 其位置应便于出 入。在消声器前后应设检修门。风机采用的闸门,可电动、手动两用。要求开关灵活,使用方便,密闭性好,漏风 少,有防冻措施,开启 /关闭时间不大于 3min。该通风设备不设反风道, 采用断电制动停机后电机反转的方式进行反风, 能在 10min 内改变巷道中风流的方向, 当风流方向改变后, 反风量不小于正常风量的 40%。满足煤 矿

21、安全规程的有关规定。6.2.5 其它在通风机房东南侧设配电控制室,通风机房两回10kV电源引自工业场地新建35/10kV 变电所10k V侧不同母线段,一回工作、一回备用。通风机附属设施所需的低压电源引 自通风机房高压配电室内的所用变压器 , 一回工作、一回备用。通风机房内设 KYN28A-12 型抽出式金属封闭高压真空开关柜 16 台。在控制室中设集操台和风机在线监测装置一 套。6.3 排水设备设计井下排水采用集中排水系统,井下涌水全部汇集到下部5-2煤层大巷后集中排出。设计在 5-2 煤辅助运输大巷末端布置井底水仓、主排水泵房及变电所,排水管路沿 5-2煤回风大巷敷设,排至副平硐排水沟,再

22、自流到地面井下水处理站。6.3.1 设计依据5-2煤回风大巷顶端标高:+1081 m排水泵房标高:+1065m正常涌水量:170 m3/h最大涌水量:220m3/h排水距离:2100 m排水高度:21 m6.3.2 设备选型工作泵的排水能力应满足:Q _1.2 Q正=1.2 170 二 204m3/h3Qmax - 1.2 Q最大二 1.2 220 - 264m / h水泵扬程为吸水高度、排水高度及管道阻力损失之和。根据所需的水泵排水能力的要求,本设计考虑了两个方案,方案比较见表6.3-1。从表中可以看出,两个方案的排水能力都能满足矿井排水的要求。第一种方案所选 水泵是在原D型泵基础上改进而成

23、,泵的首级叶轮、进水段及主要过流部件采用耐磨材 质,使泵的抗汽蚀性能和耐磨性能得到了较大的提高,从而保证泵在较长的一段时期内 保持高效运行,并有效地延长了泵的使用寿命,泵的吸程较原D型泵有所提高。其优点是采用变频调速可灵活的控制水泵的流量,容易找到比较适合且经济的工况点,利于节 约能源;泵的效率高,年运行费用低;缺点是设备初期投资较高。方案二所选用的水泵 为矿用潜水电泵,是在 QJ系列潜水电泵的基础上,专为矿山排水设计的潜水设备,它 吸取了国外矿用潜水电泵的特点,采用特殊加工工艺和结构,适用矿床地表疏干,掘进 井筒的井底排水、倾斜巷道的掘进排水及水仓排水等,其优点是设备初期投资较低;缺 点是效

24、率低,轴功率高,水泵年运行费用高。经技术经济综合比较,设计推荐方案一,即选用 3台MD280-432X型矿用耐磨多级 离心泵,配 YB280S-4( 75kW 1480r/min 660V)矿用隔爆电动机。排水泵的工况点计算:排水设备选型方案比较表表 6.3-1内容方案一(推存)万案一新管旧管新管旧管水泵型号MDi280-43 2(变频调速)300QK320-88/4台数(台)33工况 占八、流量(m3/h)223.9209.9354.38317.11扬程(m)4150.971.1389.24效率(%)77.976.572.2376.22轴功率(kW)33.139.297.89104.15允许

25、吸上真空度(m)5.695.89转 速(r/min)105011501480电 动 机型 号YB280S-4YQSY-4功 率(kW)75132电 压(kV)0.660.66转 速(r/min)14801480正常 涌水量运行台数(台)11排水时间(h)18.2219.4411.5112.87最大 涌水量运行台数(台)21排水时间(h)11.7912.5814.916.65排水管规格 (mm)型73< 273<流速 (m/s)1.181.371.872.06总趟数(趟)22吸 水 管规格 (mm)的25<流速 (m/s)0.830.961.311.45吨水百米电耗(kWh/t

26、hn)0.7750.981.431.7年运行费用(万元)13.3916.9324.729.4投资设备及管路费(万兀)34.19+91.0614.4+91.06矿建费(万元)2018合计(万兀)145.25( 000)123.46(-21.79)MDi280-432型矿用耐磨多级离心泵特性曲线及工况点参数见图6.3-1,主排水泵房排水管道系统图见图6.3-2图 6.3-1图 6.3-2管道特性曲线方程:新管:H = HtRd=213.9910JQ2旧管:H 二 HtR2Q2=21 6.7910*Q2式中:R1、R2管道阻力系数,新管时 R1=3.99 KJ4,旧管时R2= 6.79 W4;Ht吸

27、水面至排水口几何高差(m)。水泵工况点参数:新管:流量223.9n3/h、扬程41m效率77.9%轴功率33.1kW允许吸上真空度5.69m旧管:流量209.9用巾、扬程50.9m效率76.5%轴功率39.2kW允许吸上真空度 5.89m>正常涌水时水泵为1台工作,1台备用,1台检修。最大涌水时水泵为2台工作,1 台检修。满足煤矿安全规程的有关规定。泵房内的排水管道选用 29K无缝钢管,5'2回风大巷内的排水管道选用 並73K无 缝钢管2趟。正常涌水时1趟工作,1趟备用,最大涌水时2趟同时工作。在泵房内采 用法兰连接,在大巷中采用柔性管接头连接。6.3.3其它排水泵的灌注引水方式

28、采用 ZPBZ型喷射泵,以排水管道中的压力水为能源,同时 以消防洒水为备用能源。为便于设备安装和检修,在泵房内设有固定起重梁,配备单轨小车和手拉葫芦。水泵电机由相邻的主排水泵房配电室内的 ZJT-110/66矿用隔爆变频器供电和控制。当水泵变频器发生故障,电动机启动需关小水泵出口闸门后方可启动。6.4压风设备6.4.1设计依据矿井投产时,井下在2个综掘面和1个普掘面设有风动工具,达产时在 2个连采机 掘、2个综掘、1个普掘面设有风动工具。矿井投产时用气地点及用风工具使用情况见 表 6.4-16.4.2设备选型1 选型计算岩普掘工作面用气量按工作面中风镐与气腿凿岩机同时使用、混凝土喷射机不同时使

29、用考虑,取大值;大巷 综掘工作面锚喷支护使用一台混凝土喷射机;井底煤仓空气炮 属于临时用气,不计入总用气量。则矿井所需风量:矿井用气地点及用气量表表 6.4-1用气地点设备耗气量(m3/min 台)工作压力(MPa)总耗气量(m3/mi n)名称工作台数普掘工作面风镐21.20.4 0.52.4气腿风动凿岩机430.5 0.612混凝土喷射机1580.15 0.48综掘工作面混凝土喷射机1580.15 0.48锚索钻机22.9 3.60.57.2煤仓(2个)空气炮0.4 0.84.32Q = : i : 2 ' miqiki=1.2 K.15 X 01 ( 8+ 4 >3 >

30、;0.96+2 X 2 区 99+ 2 >3.6 区.99)=40.5m/min式中:a沿管道全长的漏风系数,取1.2;a于风动工具的磨损耗气量增加系数,取1.15;丫一海拔高度修正系数,取1.01;mi同型号风动工具,同时使用台数;qi每台风动工具的耗气量,m3/min;ki同型号风动工具,同时使用系数。按满足投产时的1个回采工作面(23)人员和3个掘进工作面(3x15人员灾害预 防的用风计算所需风量:Q =na y=68 >1.2 X01 0<3=24.7 (m/min)式中:a沿管道全长的漏风系数,取1.2;丫一海拔高度修正系数,取1.01;q 事故情况下工作面每人配送

31、风量按 0.3m3/min 计;n 最大班工作面人数,按 68 人计。设计考虑以上两种情况下用风量,并取大值即40.5m3/min2方案比较根据风动工具使用地点、 用气量及场地布置和国家安全生产监督管理总局关于煤矿 “三条线”建设的通知要求,本设计推荐在风井场地集中设置空压机站敷设管道下井向 井下掘进工作面、煤仓供气的方案。对压缩机机型,目前属传统活塞式和螺杆式并存的状况。由于螺杆式机组具有结构 简单,零部件数量少,外形紧凑,重量轻,运行平稳,维护工作量少,其比功率接近或 达到活塞式空压机的水平,气量调节方便,近年已成矿山大量应用的主要趋势。为此设 计推荐采用螺杆式空压机组。 并同时考虑了在国

32、内使用效果及运行节能效果较好的两种 螺杆式压风设备的方案比选。方案比较见表6.4-2。方案一初期选用 2台SA-120A型螺杆式空压机,随机配电动机(380V 125kW 1470r/min,后期增加两台SM-490型井下移动式空压机,随机配电动机(660V 90kW 1470r/min,优点是运行方式灵活,采用两套系统可靠性更高,使用移动式空气压缩机, 可保证后期用气设备的用风需求,并且使后期巷道维护更为方便,缺点是投资稍高。方案二选用5台SA-75型螺杆式空压机,随机配电动机(380V 75kW 1470r/mi) 缺点空压机房占地面积大,没有方案一运行方式灵活,井下用风地点必须敷设压缩空

33、气 管路才能使用风动工具。压缩空气设备方案比较表表 6.4-2内容方案一(推存)万案一空气 压缩机型号SA-120A( SM-490)SA-75A排气量(mP/min)21(16)12.8额定排气压力(MPa)0.85(0.7)0.85冷却方式风冷风冷台数(台)3(2)5电 机型号功率 (kW)125(90)75电压 (V)380(660)380转速(r/mi n)14701470压气管道规格(mm) 159X4.5 159X4.5投资设备费(万兀)102 ( ±).00)90 (-12)土建费(万兀)11.613.5合计(万兀)113.6 (±).00103.5 (-10

34、.1)3设备选型经综合技术经济比较,采用方案一,即初期选用SA-120A型螺杆式空压机2台,风冷却,排气量21 m3/min,排气压力0.85MP©随机配电机(380V 125kW 1470r/min电 动机,后期增加2台井下移动式空压机,型号为 SM-490排气量16 m3/min,排气压力 0.7MPa随机配电机(660V 90kW 1470r/min电动机。初期供气距离较近时,井下设 备用风和灾害预防用风米用SA-120A型螺杆式空压机供气,后期米用地面固定和井下移 动相结合的方式供气,地面 SA-120A型螺杆式空压机负责人员灾害预防用气和部分设备 用气,其余设备用气由移动式

35、空气压缩机供给。空压机房设于风井场地,长 宽高=197.5 8m。为便于设备安装和检修,在空压机 房内设有固定起重梁,配备单轨小车和手拉葫芦。4压风管路规格选型从空压机房沿回风斜井敷设至掘进面的干管选用© 159X 6的无缝钢管;在4煤组通风行人斜巷底部设1个1 m3的储气罐,用21/2的低压流体输送焊接管将压缩空气送至储 气罐。管道在地面采用焊接连接且埋地敷设,在井筒中采用加设套管焊接连接,在井下采 用柔性管接头连接压缩空气管路系统图见 图 6.4-1。空压机的电源引自风井场地10/0.4kV变电所,空压机本机已配带完备的微机电控系 统。6.5 制氮设备本矿井各煤层均属自然发火和有

36、可能自然发火的煤层, 为预防井下采空区浮煤自然 发火,设计确定本矿井建立以氮气防灭火为主,喷洒阻化剂、均压通风等的综合防灭 火措施并建立安全监测、监控系统。6.5.1 设计依据矿井采用平硐开拓方式,主要开拓巷道、盘区巷道均布置在煤层中。采用长壁采煤 法, 全部垮落法 管理顶板。矿井投产时井下布置1个5-2煤长壁一次采全高综采工作面,平均采高 6.0m,工作 面长度260m年推进度1713m另配备2个综掘工作面和1个岩普掘工作面。矿井移交生产时首先开采 5-2号煤层,配备 1 个 5-2煤一次采全高综采工作面,平均 采高6.0m,工作面长度260m年推进度1713m另配备2个综掘工作面,1个岩普

37、掘工 作面,达到矿井初期3.0Mt/a的生产能力。在5-2号煤层大约开采3年以后,再在4-2煤层 布置 1 个回采工作面, 以解决煤层压茬关系。 条件具备时, 布置 1 个 4-2煤回采工作面和 1 个 3-1煤回采工作面,即 3-1煤与 4-2煤搭配开采,另增加 2个连续采煤机工作面,以保 证矿井6.0Mt/a设计生产能力。根据国内外经验,防火注氮量一般为5m3/min;若回风敞口,灭火注氮量不能小于9.2nf/min;全圭寸闭时,可控制在 8m3/min=6.5.2 制氮系统方案图 6.4-1对于制氮系统的布置方式,国内常用的有地面集中式和井下移动式。地面集中制氮 系统,工作环境好, 便于

38、维护管理, 设备投资少, 故障率低, 在相对静态的条件下工作, 一旦出现故障,排除方便。当某处出现着火危险,可方便调用所有氮气集中进行高强度 注氮,将着火危险消灭在萌芽中,但地面制氮系统存在输气距离长,效率低,能源损耗 大,运行费用高,管材及安装费用多,需建制氮机房,土建投资多。而井下移动式制氮系统,机动灵活,使用方便,可根据使用需要开起相应设备,输气管路短,管材及安装费用低,损耗小,运行费用低;但所有电机、电器等均需严格按防爆等级执行,设备投 资高,工作环境较差,维护费用高,体积也受到限制,特别是对于变压吸附式设备,吸 附塔卧式安装,吸附剂的性能无法充分发挥。根据上述综合分析比较,为了提高制

39、氮效率,减少输气管路损耗,节省管材及安装 费用,降低运行费用, 方便制氮设备上、下井及在井下安置,设计推荐井下移动式制氮 系统。6.5.3 制氮设备选型6.5.3.1 氮气防灭火的技术要求本设计将氮气主要用于回采面拆架、安装、收作、停采时的防灭火,也可用于煤巷 高冒区、老空区的防灭火。当工作面采空区出现发火征兆时,连续或间隙地向采空区注 入氮气直到征兆消除。6.5.3.2 矿井防灭火所需的注氮流量按采空区氧化带氧含量计算注氮量Qn=K ( C1- C2)Qv/(CN+C2-1)式中:K备用系数,1.21.5;Q-采空区氧化带漏风量,5-2煤取5.0m3/min, 4-2、3-1煤取4.0m/m

40、in;Ci-采空区氧化带内原始氧的含量(均值),17%;C2-注氮防火隋化指标,7%; Cn注入氮气的浓度,97%。投产时一盘区 Qn=1.5< (17%-7狩 5.0/(97%+7%-1)=18.75 m3/min(1125m3/h)达产时一盘区 Qn=2X 1.5X (17%-7% 4.0/(97%+7%-1)=30.00 m/min (取 1800m/h)6.5.3.3 注氮方式和防灭火方法井下设移动注氮站,主要用于回采面拆架、安装、收作、停采时的防灭火,也可用 于煤巷高冒区、老空区的防灭火。当工作面采空区出现发火征兆时,连续或间隙地向采 空区注入氮气直到征兆消除。根据矿井火灾发生的地点不同,灭火的方式也不同,按煤矿安全规程要求,编 制专门设计,同时生产中应制定安全计划、措施、管理制度、作业规程等,因此具体的 灭火方法应在下阶段设计中针对不同的发火形式,发火地点制定不同的灭火方法。6.5.3.4 制氮设备方案比选 根据设计依据和矿井防灭火要求的注氮量,选用深冷空分式、变压吸附式和膜分离 式制氮设备均可满足注氮要求, 但深冷空分制

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论