



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一、空间直角坐标系的建立的常见方法运用“坐标法”解答空间几何体问题时,往往需要建立空间直角坐标系依据空间几何体的结构特征,充分利用图形中的垂直关系或构造垂直关系建立空间直角坐标系,是解决问题的基础和关键 一、利用共顶点的互相垂直的三条棱建系 例1、在正方体ABCDABCD中,点M是棱AA的中点,点O是对角线BD的中点.()求证:OM为异面直线AA和BD的公垂线;()求二面角MBCB的大小;w_w w. k#s5_u.c o*m例2、CBAC1B1A1如图,在直三棱柱中, AB=1,ABC=60.()证明:;()求二面角AB的大小。w.w.w.k.s.5.u.c.o.m 二、利用线面垂直关系建系
2、例3、已知三棱锥PABC中,PA面ABC,ABAC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.()证明:CMSN;()求SN与平面CMN所成角的大小.例4、如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CEAC,EFAC,AB=,CE=EF=1.()求证:AF平面BDE;()求证:CF平面BDE;()求二面角A-BE-D的大小。例5、如图,在三棱锥中,ACBPzxy,()求证:;()求二面角的大小;()求点到平面的距离例6、 如图2,在三棱柱ABCA1B1C1中,AB侧面BB1C1C,E为棱CC1上异于C、C1的一点,EAEB1已知,BB12,BC
3、1,BCC1求二面角AEB1A1的平面角的正切值三、利用面面垂直关系建系例7、如图3,在四棱锥VABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD底面ABCD(1)证明AB平面VAD;(2)求面VAD与面VDB所成的二面角的余弦值例8、在直三棱柱中,ABBC,D、E分别为的中点(1)证明:ED为异面直线与的公垂线;(2)设,求二面角的大小例9、四棱锥SABCD中,底面ABCD为平行四边形,DBCAS侧面SBC底面ABCD。已知ABC45°,AB2,BC=,SASB。()证明:SABC;()求直线SD与平面SAB所成角的大小;例10、如图,直三棱柱中,为的中点,为上的一点,()证明:为异面直线与的公垂线;()设异面直线与的夹角为45°,求二面角的大小四、利用正棱锥的中心与高所在直线构建直角坐标系例11已知正四棱锥VABCD中,E为VC中点,正四棱锥底面边长为2a,高为h(1)求DEB的余弦值;(2)若BEVC,求DEB的余弦值二、求平面的法向量法向量的定义:如果向量平面,那么向量叫做平面的法向量。平面的法向量共有两大类(从方向上分),且有无数条。方法:1、 找现成的面的垂线;2、 不定方程组法:设平面的法向量为,是平面内的2个相交向量,由 可得一个含的不定方程组,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年无人机行业技术突破与市场应用前景研究报告
- 2025年市场调研智能家居控制系统市场潜力可行性研究报告
- 2025年企业数字化转型战略实施风险分析可行性报告
- 2025年研发团队绩效提升可行性研究报告
- 2025年产业政策适应性对绿色能源产业发展研究报告
- 2025年上海数字城市规划研究中心公开招聘考前自测高频考点模拟试题及答案详解(必刷)
- 2025安徽安庆医药高等专科学校面向校园招聘21人模拟试卷附答案详解(考试直接用)
- 2025甘肃武威市古浪县八步沙林场招聘财会、水利专业人员3人模拟试卷及答案详解(典优)
- 2025内蒙古巴彦淖尔市杭锦后旗奋斗中学自主招聘教师3人模拟试卷及一套答案详解
- 2025江西吉安市吉州区社会福利院招聘编外工作人员1人(三)考前自测高频考点模拟试题及参考答案详解一套
- 2025年杭州上城区总工会公开招聘工会社会工作者9人笔试参考题库附答案解析
- 2025年互联网+特殊教育行业研究报告及未来发展趋势预测
- 医院信息安全保密培训课件
- 物流紧急事件应急预案方案
- 幼儿创意玉米课件
- 2025年智能焊接机器人产业发展蓝皮书-GGII高工咨询
- 冷却塔填料更换施工方案
- 运输公司环保措施方案(3篇)
- 2025安全月八大特殊作业竞赛题库及答案
- 医疗机构基孔肯雅热防控卫生监督检查表
- 刀具更换管理办法
评论
0/150
提交评论