大会现场黄圣君主动学习_第1页
大会现场黄圣君主动学习_第2页
大会现场黄圣君主动学习_第3页
大会现场黄圣君主动学习_第4页
大会现场黄圣君主动学习_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Recent Progress on Active LearningSheng-Jun Huang (黄圣君)Nanjing University of Aeronautics and Astronautics2018-4-22 VALSELearning with Fewer Labeled Data2 years for 4000 sentencesin PennTreebanktime consumingonly experts can provideaccurate annotationshigh expertisebut expensiveLabeled data is import

2、ant Can we learn with fewer labeled data?2Active Learninglabeled dataquery some labelsoracle(annotator)trainmunlabeled dataGoal: train an effective mwith least labeling cost3Active LearningWhich instance to select?Informative instancesRepresentative instancesInformative & representative instances4Re

3、cent ProgressWeak supervisionThe oracle may be noisyor unavailableCost sensitiveCare the cost rather thanthe numberMdependentDifferent ms mayhave diverse needsMore Practical and More Systematic5Recent ProgressWeak supervisionThe oracle may be noisyor unavailableCost sensitiveCare the cost rather tha

4、nthe numberMdependentDifferent ms mayhave diverse needs6Active learning with Weak SupervisionCollaborative labeling from crowdsLabeler quality estimationEnsemble kernel machine classifierRobust to label noisemHua. Collaborative Active Visual Recognition from Crowds A Distributed Ensemble Approach. P

5、AMI 2018.7.Active learning with Weak SupervisionPairwise comparison from noisy labelersLeverage both types of oraclesLower querying complexity under different noise conditionsLabeling oracleComparison oraclemXu. Noise-Tolerant Interactive Learning Using Pairwise Comparisons. NIPS 2017.8Active learni

6、ng with Weak SupervisionSelf-paced active learningSelf-annotation for high-confident instancesOracle annotation for low-confident instancesLin. Active Self-Paced Learning for Cost-Effective and Progressive Face Identification. PAMI 2018.9Active learning with Weak SupervisionActive query from source

7、domainsOracle is not available in the target domainInsufficient labeled data in all domainsOracledomainadaptationSource DomainTarget DomainWang. On Gleaning Knowledge from Multiple Domains for Active Learning. IJCAI 2017.10Unlabeled data Labeled data Unlabeled data Labeled data Recent ProgressWeak s

8、upervisionThe oracle may be noisyor unavailableCost sensitiveCare the cost rather thanthe numberMdependentDifferent ms mayhave diverse needs11Cost-Sensitive Active LearningOracles are cost-sensitiveDifferent oracles have diverse pricesSelecting both instance and oracleAccurate yet cheap annotationsL

9、ow overall qualityLow priceExpert for this queryHigh overall qualityHigh priceLess familiar with itmWho is this ?Huang. Cost-Effective Active Learning from Diverse Labelers. IJCAI 2017.12.Cost-Sensitive Active LearningLabels are cost-sensitiveLabels have hierarchiesBi-objective optimization tobalanc

10、e the cost and informationYan. Cost-Effective Active Learning for Hierarchical Multi-Label Classification. IJCAI 2018.13Cost-Sensitive Active LearningLearning task is cost-sensitiveQuery the cost of predicting a specific labelGuarantee a polynomial improvement onlabel complexity for low noise caseKr

11、ishnamurthy. Active Learning for Cost-Sensitive Classification. ICML 2017.14Recent ProgressWeak supervisionThe oracle may be noisyor unavailableCost sensitiveCare the cost rather thanthe numberMdependentDifferent ms mayhave diverse needs15Active Learning with Deep MsActive madaptationA novel criteri

12、on “distinctiveness”Reuse of pre-trained mLess training datasHuang. Cost-Effective Training of Deeps with Active MAdaptatio. arXiv 2018.16Active Learning with Deep MsActive annotation with deep generative msDeep generative mto create novel instancesOracle directly annotates the decision boundaryHuijser. Active Decision Boundary Annotation with Deep Generative Ms. ICCV 2017.17Active Learning for Various ApplicationsHuman Pose Estimation Liu & Ferrari ICCV17Face Identification Lin. PAMI18Semantic

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论