超几何分布与二项分布_第1页
超几何分布与二项分布_第2页
超几何分布与二项分布_第3页
超几何分布与二项分布_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1(2010广东,本小题满分12分)某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作为样本算出他们的重量(单位:克)重量的分组区间为(490,495,(495,500,(510,515,由此得到样本的频率分布直方图,如图所示.(I)根据频率分布直方图,求重量超过505克的产品数量.(II)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列.(III)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.解:(I)重量超过505克的产品数量是40×(0.05×5+0.01×5)=40×

2、0.3=12件.(II)Y的可能取值:0,1,2,Y的分布列为Y012P(III)以下的方法哪个正确?利用样本估计总体,该流水线上产品重量超过505克的概率是0.3,令为任取的5件产品中,重量超过505克的产品数量,则,故所求概率为:从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率是超几何分布与二项分布一、超几何分布一般地,设有总数为件的两类物品,其中一类有件,从所有物品中任取件,这件中所含这类物品件数是一个离散型随机变量,它取值为时的概率为,为和中较小的一个我们称离散型随机变量的这种形式的概率分布为超几何分布,也称服从参数为,的超几何分布在超几何分布中,只要知道,和,就可以

3、根据公式求出取不同值时的概率,从而列出的分布列二、二项分布(1)独立重复试验如果每次试验,只考虑有两个可能的结果及,并且事件发生的概率相同在相同的条件下,重复地做次试验,各次试验的结果相互独立,那么一般就称它们为次独立重复试验次独立重复试验中,事件恰好发生次的概率为(2)二项分布若将事件发生的次数设为,事件不发生的概率为,那么在次独立重复试验中,事件恰好发生次的概率是,其中于是得到的分布列由于表中的第二行恰好是二项展开式各对应项的值,所以称这样的散型随机变量服从参数为,的二项分布,记作三、超几何分布与二项分布的区分(1)假定某批产品共有N个,其中有M个次品,从中不放回的依次抽出n件产品,那么次

4、品数X的概率分布如何?(也可这样说:每次取出1件,不放回地取了n次。也可以说一次取出了n件。)从中任意抽出1件产品,是次品的概率是,数学期望,方差。(2)假定某批产品共有N个,其中有M个次品,从中有放回的依次抽出n件产品,那么次品数X的概率分布如何?(也可这样说:每次取出1件,有放回地取了n次。也可以说每次取出1件,重复地取出了n次。)从中任意抽出1件产品,是次品的概率是,数学期望,方差。(3)关系是:,即当N越大,与越接近。2(本小题满分12分)盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得1分 现从盒内任取3

5、个球(I)求取出的3个球中至少有一个红球的概率;(II)求取出的3个球得分之和恰为1分的概率;(III)设为取出的3个球中白色球的个数,求的分布列和数学期望解:(I);(II)记 “取出1个红色球,2个白色球”为事件,“取出2个红色球, 1个黑色球”为事件,则 (III)可能的取值为, , 的分布列为:0123的数学期望 13分3(本小题满分12分)由于当前学生课业负担较重,造成青少年视力普遍下降,现从某高中随机抽取16名学生,经校医用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:(I)指出这组数据的众数和中位数;(II)若视力测试结果不低丁5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;(III)以这16人的样本数据来估计整个学校的总体数据,若从该校任选3人,记表示抽到“好视力”学生的人数,求的数学期望解:(I)众数:4.6和4.7;中位数:4.75 2分(II)设表示所取3人中有个人是“好视力”,至多有1人是“好视力”记为事件,则 6分【请问】对不对?为什么

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论