高分子化学题目_第1页
高分子化学题目_第2页
高分子化学题目_第3页
高分子化学题目_第4页
高分子化学题目_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第三章 自由基聚合思考题2、下列烯类单体适于何种机理聚合?自由基聚合、阳离子聚合还是阴离子聚合?并说明原因。CH2=CHCl CH2=CCl2 CH2=CHCN CH2=C(CN)2 CH2=CHCH3 CH2=C(CH3)2 CH2=CHC6H5 CF2=CF2 CH2=C(CN)COOR CH2=C(CH3)-CH=CH2答:CH2=CHCl:适合自由基聚合,Cl原子是吸电子基团,也有共轭效应,但均较弱。CH2=CCl2:自由基及阴离子聚合,两个吸电子基团。CH2=CHCN:自由基及阴离子聚合,CN为吸电子基团。CH2=C(CN)2:阴离子聚合,两个吸电子基团(CN)。CH2=CHCH3:

2、配位聚合,甲基(CH3)供电性弱。CH2=CHC6H5:三种机理均可,共轭体系。CF2=CF2:自由基聚合,对称结构,但氟原子半径小。CH2=C(CN)COOR:阴离子聚合,取代基为两个吸电子基(CN及COOR)CH2=C(CH3)-CH=CH2:三种机理均可,共轭体系。3、下列单体能否进行自由基聚合,并说明原因。CH2=C(C6H5)2 ClCH=CHCl CH2=C(CH3)C2H5 CH3CH=CHCH3CH2=CHOCOCH3 CH2=C(CH3)COOCH3 CH3CH=CHCOOCH3 CF2=CFCl答:CH2=C(C6H5)2:不能,两个苯基取代基位阻大小。ClCH=CHCl:

3、不能,对称结构。CH2=C(CH3)C2H5:不能,二个推电子基,只能进行阳离子聚合。CH3CH=CHCH3:不能,结构对称。CH2=CHOCOCH3:醋酸乙烯酯,能,吸电子基团。CH2=C(CH3)COOCH3:甲基丙烯酸甲酯,能。CH3CH=CHCOOCH3 :不能,1,2双取代,位阻效应。CF2=CFCl:能,结构不对称,F原子小。计算题1、甲基丙烯酸甲酯进行聚合,试由和来计算77、127、177、227时的平衡单体浓度,从热力学上判断聚合能否正常进行。解:由教材P64上表3-3中查得:甲基丙烯酸甲酯=-56.5kJ/mol,=-117.2J/mol K平衡单体浓度:T=77=350.1

4、5K,4.94*10-3mol/LT=127=400.15K,0.0558mol/LT=177=450.15K,0.368mol/LT=227=500.15K,1.664mol/L从热力学上判断,甲基丙烯酸甲酯在77、127、177下可以聚合,在227上难以聚合。因为在227时平衡单体浓度较大。2、60过氧化二碳酸二环己酯在某溶剂中分解,用碘量法测定不同时间的残留引发剂浓度,数据如下,试计算分解速率常数(s-1)和半衰期(h)。时间 /h00.20.71.21.7DCPD浓度 /(mol·L-1)0.07540.06600.04840.03340.0288解:过氧化二碳酸二环己酯的分

5、解反应为一级反应,引发剂浓度变化与反应时间的关系为:通过以对t作图,利用最小二乘法进行回归得一条直线,斜率为-kd。得到:kd=0.589h-1=1.636*10-4s-1半衰期:3、在甲苯中不同温度下测定偶氮二异丁腈的分解速率常数,数据如下,求分解活化能。再求40和80下的半衰期,判断在这两温度下聚合是否有效。温度 /5060.569.5分解速率常数 /s-12.64´10-61.16´10-53.78´10-5解:分解速率常数、温度和活化能之间存在下列关系:,以对作图,斜率为,截距为。采用最小二乘分法进行回归,得:Ed=8.314*15116=125674.4

6、=125.7kJ/mol当t=40=313.15K时当t=80=353.15K时以此可见,在40下聚合时引发剂的半衰期太长,聚合无效,而在80下聚合是有效的。4、引发剂半衰期与温度的关系式中的常数A、B与指前因子、活化能有什么关系?文献经常报道半衰期为1h和10h的温度,这有什么方便之处?过氧化二碳酸二异丙酯半衰期为1h和10h的温度分别为61和45,试求A、B值和56的半衰期。解:(1)常数A、B与频率因子、活化能的关系:t1/2= kd=Adexp(-Ed/RT) logt1/2=logln2-logkd=logln2-logAd+(Ed/RT)loge 比较logt1/2=A/T-B与上

7、式得A=(loge /R)Ed,B= log(Ad/ln2)(2)当t1/2=10hr时,logt1/2=A/T-B=log10=1,得A/T (t1/2=10hr)-B=1当t1/2=1hr时,logt1/2=A/T-B=log1=0,得A/ T(t1/2=1hr)-B=0则A= T (t1/2=10hr)T(t1/2=1hr)/(T (t1/2=1hr)- T(t1/2=10hr)B=T (t1/2=10hr)/(T (t1/2=1hr)- T(t1/2=10hr)由此可见了解半衰期为10hr和1hr时的分解温度便于计算A、B值,粗略知道反应温度与分解温度的关系,选择引发剂,当t1/2=1

8、hr时,反应时间为几小时,温度不限,应注意此时的T是否在可能的反应温度范围内。当t1/2=10hr时,反应时间为几十小时,此时T是反应温度的下限。二者差值(T (t1/2=1hr)- T(t1/2=10hr)大,则反应活化能小。(3)已知过氧化二碳酸二异丙酯半衰期为10hr和1hr时的分解温度分别为45和61,得常数A、B为A=6.6×103,B=1.99×10 (4)Lgt1/2=A/TB5、(略)6、苯乙烯溶液浓度0.20 mol·L-1, 过氧类引发剂浓度为4.0´10-3mol·L-1, 在60下聚合,如引发剂半衰期44h, 引发剂效率

9、f=0.80,kp=145 L·(mol·s)-1,kt=7.0´107 L·(mol·s)-1, 欲达到50%转化率,需多长时间?解:当引发剂浓度随时间不变时:7、过氧化二苯甲酰引发某单体聚合的动力学方程为:Rp=kPM(fkd/kt)1/2I1/2,假定各基元反应的速率常数和f都与转化率无关,M0=2 mol·L-1,I=0.01 mol·L-1,极限转化率为10%。若保持聚合时间不变,欲将最终转化率从10提高到20,试求:(1)M0增加或降低多少倍?(2)I0增加或降低多少倍?I0改变后,聚合速率和聚合度有何变化?(3

10、)如果热引发或光引发聚合,应该增加或降低聚合温度? Ed、Ep、Et分别为124、32 和8 kJ·mol-1。解:(题意有修改)低转化率下聚合动力学方程:令(1)当聚合时间固定时,C与单体初始浓度无关,故当聚合时间一定时,改变不改变转化率。(2)当其它条件一定时,改变,则有:,即引发剂浓度增加到4.51倍时,聚合转化率可以从10%增加到20%。由于聚合速率,故增加到4.51倍时,增加2.12倍。聚合度,故增加到4.51倍时,下降到原来0.471。即聚合度下降到原来的1/2.12。(3)引发剂引发时,体系的总活化能为:热引发聚合的活化能与引发剂引发的活化能相比,相当或稍大,温度对聚合

11、速率的影响与引发剂引发相当,要使聚合速率增大,需增加聚合温度。光引发聚合时,反应的活化能如下:上式中无项,聚合活化能很低,温度对聚合速率的影响很小,甚至在较低的温度下也能聚合,所以无需增加聚合温度。8、以过氧化二苯甲酰做引发剂,苯乙烯聚合时各基元反应的活化能为Ed=125 kJ·mol-1,Ep=32.6 kJ·mol-1,Et=125 kJ·mol-1,试比较从50增至60以及从80增至90聚合速率和聚合度的变化。光引发的情况又如何?解:(1)聚合速率:k=Ae-E/RT一般式E=Ep+Ed/2-Et/2=32.6+125/2-10/2=90.4(KJ/mol)

12、(2) (=2)E=Ep-Ed/2-Et/2=32.6-125/2-10/2=-35.2(KJ/mol)聚合速率:当T从5060当T从8090 温度升高,速率增大,在低温区变的更明显(1) 聚合度温度升高,聚合度降低,在高温区变的更明显(2) 若为光引发:Ed=0 E=Ep-Et/2=32.6-10/2=-27.6(KJ/mol) E=Ep-Et/2 (相同)聚合速率:5060 聚合度:kp、变化一致,温度升高,kp、将增加8090 在低温变化将更明显,但总的来说变化不大。9、以过氧化二苯甲酰为引发剂,在60进行苯乙烯聚合动力学研究,数据如下:a. 60苯乙烯的密度为0.887 g·

13、cm-3;b. 引发剂用量为单体重的0.109%;c. Rp=0.255´10-4 mol·(L·s)-1;d.聚合度=2460;e. f=0.80;f. 自由基寿命=0.82 s。试求kd、kp、kt,建立三常数的数量级概念,比较 M和M·的大小,比较RI、Rp、Rt的大小。解:偶合终止:C=0.77,歧化终止:D=0.23。>>可见,kt>>kp,但M>>M,因此Rp>>Rt;所以可以得到高分子量的聚合物。Rd10-8kd10-6M8.53Rp10-5kp102M·1.382×10-

14、8Rt10-8kt10710、(略)11、对于双基终止的自由基聚合物,每一大分子含有1.30个引发剂残基,假定无链转移反应,试计算歧化终止和偶合终止的相对量。答:体系几个增长链A为偶合,1-A歧化,相对量以动力学链为100%,B代表每一个大分子含有的引发剂残基。B=2/(2-A) 则A=(2B-2)/B 1-A=(2-B)/BA:1-A=(2B-2):(2-B)=(2×1.3-2):(2-1.3)=6:7偶合A=6/13=46.2% 1-A=53.8%其他算法:偶合的分子个数X,歧化Y, 2X+Y=1.3(X+Y),从引发剂残基考虑X:Y=3:7则动力学链为2X:Y=6:7,偶合占6

15、/13,歧化7/1312、以过氧化特丁基作引发剂,60时苯乙烯在苯中进行溶液聚合,苯乙烯浓度为1.0 mol·L-1,过氧化物浓度为0.01mol·L-1,初期引发速率和聚合速率分别为4.0´10-11和1.5´10-7 mol·(L·s) -1。苯乙烯-苯为理想体系,计算(fkd)、初期聚合度、初期动力学链长和聚合度,求由过氧化物分解所产生的自由基平均要转移几次,分子量分布宽度如何?计算时采用下列数据:CM=8.0´10-5,CI=3.2´10-4,CS=2.3´10-6,60下苯乙烯密度为0.887

16、g·ml-1,苯的密度0.839 g·ml-1。解:M=1.0mol/LI=0.01mol/L60,苯乙烯偶合终止占77%,歧化终止占23%。若无链转移,若同时发生单体、引发剂和溶剂转移,则按下式计算:13、按上题制得的聚苯乙烯分子量很高,常加入正丁硫醇(CS=21)调节,问加多少才能制得分子量为8.5万的聚苯乙烯?加入正丁硫醇后,聚合速率有何变化?(该题虽不是作业,但因为与12题有关,所以也附上答案)60,某单体由某引发剂引发本体聚合,M=8.3 mol·L-1,聚合速率与数均聚合度有如下关系:Rp/ mol·(L·s)-10.501.02.

17、05.010158350555033301317592358解:14、聚氯乙烯的分子量为什么与引发剂的浓度无关而仅决定于聚合温度?向氯乙烯单体链转移常数Cm与温度的关系如下:Cm=12.5exp(30.5/RT),试求40、50、55、60下的聚氯乙烯平均聚合度。解:氯乙烯聚合中,向单体转移常数约在1×10-3数量级(50时CS=1.35×10-3),单体转移速率远超过正常的动力学终止速率。氯乙烯一般采用悬浮聚合,没有溶剂,引发剂转移可忽略不计,因此PVC的平均聚合度基本有CM这一项所决定。CM的大小仅决定于温度,因此在氯乙烯悬浮聚合中靠温度来调节分子量。 CM = 730

18、0cal/mol=4.18(J/mol)45时,=1/125exp-7300×4.2/(8.31×318)=874同理50,=731 55 =614 60 =51815、用过氧化二苯甲酰作引发剂,苯乙烯在60下进行本体聚合,试计算链引发、向引发剂转移、向单体转移三部分在聚合度倒数中所占的百分比。对聚合有何影响?计算时用下列数据:I=0.04 mol·L-1,f =0.8;kd=2.0´10-6s-1,kp=176 L·(mol·s)-1,kt=3.6´107 L·(mol·s)-1,r(60)=0.887 g·mL-1,CI=0.05;CM=0.85´10-4。解:I=0.04mol/LM=0.887*1000/104=8.53mol/L偶合终止:C=0.77,歧化终止:D=0.2316、自由基聚合遵循下式规律Rp=kp(fkdI/kt)1/2M,在某一引发剂起始浓度、单体浓度和聚合时间的转化率如下表,试计算下表实验4达到50%转化率所需的时间,并计算总活化能。实验T/M/mol·L-1I/10-3 mol·L-1聚合时间/min转化率/%1601

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论