



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.课堂探究探究一 求函数的平均变化率1求函数yfx在区间x1,x2上的平均变化率的步骤是:1求函数值的增量:yfx2fx1;2求自变量的增量:xx2x1;3作商即得平均变化率:.2运动物体在t0到t1这段时间内运动的平均速度就是物体运动的位移函数st在区间t0,t1上的平均变化率,因此求平均速度的本质也是求函数的平均变化率【典型例题1】 1求函数fx在区间1,0,1,3,x0,x01上的平均变化率2假设某一物体的运动方程为s2t2,那么该物体在t2到t3时的平均速度为_思路分析:1按照平均变化率的定义分三步求解;2本质就是求函数st在区间2,3上的平均变化率1解:fx在区间1,0上的平均变化率
2、为:;fx在区间1,3上的平均变化率为:;fx在区间x0,x01上的平均变化率为:.2解析:平均速度为10,故该物体在t2到t3时的平均速度为10.答案:10探究二 导数定义的应用1利用导数的定义可以求函数的导函数或函数在某一点处的导数求导函数时,可按如下步骤进展:1求函数的增量yfxxfx;2求平均变化率;3取极限,得导数fx.2求函数fx在xx0处的导数时,可以有两种方法:一是直接利用导数的定义求得,即fx0 ;二是先利用导数的定义求出fx,再计算fx在xx0的函数值【典型例题2】 1求函数fxx3x在x1处的导数;2求函数fx2的导数思路分析:对于1可有两种方法:一是直接利用导数定义求解
3、,二是先求出fx,再令x1求得fx的函数值即得导数值;对于2可按照导函数的定义直接求导数解:1导数定义法因为yf1xf11x31x2x33x24x,所以x23x4,于是fx在x1处的导数f1x23x44.导函数的函数值法因为yfxxfxxx3xxx3xx33·x2·x3·x·x2x,所以x23·x·x3x21.于是fx的导数fx3x21.从而f13×1214.2因为yfxxfx22,所以,于是fx的导数fx.点评 利用导数定义求导数的关键在于取极限后,对的变形与化简,使之可以约去分母中的x,然后求得导数探究三 导数的几何意义
4、及其应用1导数的几何意义:曲线yfx在点x0,y0处的切线的斜率就是函数yfx在xx0处的导数,而切线的斜率就是切线倾斜角的正切值2运用导数的几何意义解决曲线的切线问题时,一定要注意所给的点是否在曲线上,假设点在曲线上,那么该点的导数值就是该点处的曲线切线的斜率;假设点不在曲线上,那么该点的导数值不是切线的斜率3假设所给的点不在曲线上,应另设切点,然后利用导数的几何意义建立关于所设切点横坐标的关系式进展求解【典型例题3】 1曲线yx22上一点P,那么过点P的切线的倾斜角为A30° B45° C135° D165°2函数fx2x,那么曲线yfx在点1,3处
5、的切线方程是_3假设直线l:y4xa与曲线C:yx32x23相切,务实数a的值和切点的坐标思路分析:1先利用导数定义求出fx在x1处的导数,即得切线斜率,再根据斜率与倾斜角的关系求出倾斜角;2先利用导数定义求出切线斜率,再由直线方程的点斜式写出方程;3应先设出切点,再根据导数的几何意义建立关系式求解1解析:yx22,yx,y|x11,过点P的切线的斜率为1,那么切线的倾斜角为45°,应选B.答案:B2解析:函数fx2x在点x1处的导数为f11.因此由导数几何意义知,曲线yfx在点1,3处的切线的斜率kf11,因此切线方程为y3x1,即yx2.答案:yx23解:设直线l与曲线C相切于点
6、Px0,y0,fx3x24x.由导数的几何意义,得3x4x04,解得x0或x02,家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗读儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读才能进步很快。切点的坐标为或2,3当切点为时,有4×a,a;当切点为2,3时,有34×2a,a5.所求a的值为a,切点为;a5,切点为2,3点评 本例3中,切线方程,从而切线斜率,但切点未知,因此应设出切点坐标,才能与导数的几何意义联络起来探究四
7、易错辨析易错点:不注意点是否在曲线上而出错【典型例题4】 试求过点M1,1且与曲线yx31相切的直线方程错解:3xx3x2x2, 3x2,因此y3x2,所以切线在x1处的斜率k3.故切线方程为y13x1,即3xy20.错因分析:此题错误在于没有注意到点M1,1根本不在曲线上,而直接把点M当成曲线上的点,利用导数几何意义求切线方程,导致错误防止错误的方法是先判断点是否在曲线上,再针对不同情况分别求解正确解答:y3x2解法同上,设过M1,1点的切线与曲线yx31相切于点Px0,x1,根据导数的几何意义,函数在点P处的切线的斜率为k3x ,过M1,1点的切线的斜率k,由得,3x,解之得x00或x0,所以k0或k,因此曲线yx31过点M1,1的切线方程有两条,分别为y1x1和y1,即27x4y230和y1.死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生才能开展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为进步学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背与进步学生素质并不矛盾。相反,它恰是进步学生语文程度的重要前提和根底。一般说来,“老师概念之形成经历了非常漫长的历史。杨士勋唐初学者,四门博士?春秋谷梁传疏?曰:“师者教人以不及,故谓师为师资也。这儿的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 豆类品种识别与质量控制考核试卷
- 电气设备批发商员工激励措施考核试卷
- 礼仪用品企业市场分析与预测模型应用考核试卷
- 稀土金属压延加工中的设备选型与采购策略考核试卷
- 材料老化分析考核试卷
- 棉织造行业人才培养与技能提升考核试卷
- 认证认可ISO健康与安全管理考核试卷
- 跨国财产申报风险管理与合同
- 知识产权评估与产业政策对接协议
- 创新人才共有产权住房分割及交易合同
- 高职高专英语教材电子版单选题100道及答案
- 《员工流失问题及建议研究的国内外文献综述》4300字
- (二模)2025年4月潍坊市高三高考模拟考试语文试卷(含答案)
- 2025年内蒙古赤峰新正电工技术服务有限公司招聘笔试参考题库含答案解析
- 戏曲理论测试题目及答案
- 家电行业供应链管理与优化方案
- 环保设备销售培训
- 2025江苏省安全员A证考试题库附答案
- 2025年测温定氧探头项目可行性研究报告
- 2025年山东省济南市中考一模生物试题(一)(原卷版+解析版)
- 统编版(2024)七年级下册《道德与法治》课本“活动课”参考答案
评论
0/150
提交评论