




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二元一次不等式(组)与平面区域授课类型:新授课【教学目标】1知识与技能:了解二元一次不等式的几何意义,会用二元一次不等式组表示平面区域;2过程与方法:经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力;3情态与价值:通过本节课的学习,体会数学来源与生活,提高数学学习兴趣。【教学重点】用二元一次不等式(组)表示平面区域;【教学难点】【教学过程】1.课题导入1从实际问题中抽象出二元一次不等式(组)的数学模型课本第91页的“银行信贷资金分配问题”教师引导学生思考、探究,让学生经历建立线性规划模型的过程。在获得探究体验的基础上,通过交流形成共识:2.讲授新课1建立二元一次不等式模型把实际
2、问题 数学问题:设用于企业贷款的资金为x元,用于个人贷款的资金为y元。(把文字语言 符号语言)(资金总数为25 000 000元) (1)(预计企业贷款创收12%,个人贷款创收10%,共创收30 000元以上) 即 (2)(用于企业和个人贷款的资金数额都不能是负值) (3)将(1)(2)(3)合在一起,得到分配资金应满足的条件:2二元一次不等式和二元一次不等式组的定义(1)二元一次不等式:含有两个未知数,并且未知数的最高次数是1的不等式叫做二元一次不等式。(2)二元一次不等式组:有几个二元一次不等式组成的不等式组称为二元一次不等式组。(3)二元一次不等式(组)的解集:满足二元一次不等式(组)的
3、x和y的取值构成有序实数对(x,y),所有这样的有序实数对(x,y)构成的集合称为二元一次不等式(组)的解集。(4)二元一次不等式(组)的解集与平面直角坐标系内的点之间的关系:二元一次不等式(组)的解集是有序实数对,而点的坐标也是有序实数对,因此,有序实数对就可以看成是平面内点的坐标,进而,二元一次不等式(组)的解集就可以看成是直角坐标系内的点构成的集合。3.探究二元一次不等式(组)的解集表示的图形(1)回忆、思考回忆:初中一元一次不等式(组)的解集所表示的图形数轴上的区间思考:在直角坐标系内,二元一次不等式(组)的解集表示什么图形?(2)探究从特殊到一般:先研究具体的二元一次不等式x-y&l
4、t;6的解集所表示的图形。如图:在平面直角坐标系内,x-y=6表示一条直线。平面内所有的点被直线分成三类:第一类:在直线x-y=6上的点;第二类:在直线x-y=6左上方的区域内的点;第三类:在直线x-y=6右下方的区域内的点。设点是直线x-y=6上的点,选取点,使它的坐标满足不等式x-y<6,请同学们完成课本第93页的表格,横坐标x-3-2-10123点P的纵坐标点A的纵坐标并思考:当点A与点P有相同的横坐标时,它们的纵坐标有什么关系?根据此说说,直线x-y=6左上方的坐标与不等式x-y<6有什么关系?直线x-y=6右下方点的坐标呢?学生思考、讨论、交流,达成共识:在平面直角坐标系
5、中,以二元一次不等式x-y<6的解为坐标的点都在直线x-y=6的左上方;反过来,直线x-y=6左上方的点的坐标都满足不等式x-y<6。因此,在平面直角坐标系中,不等式x-y<6表示直线x-y=6左上方的平面区域;如图。类似的:二元一次不等式x-y>6表示直线x-y=6右下方的区域;如图。直线叫做这两个区域的边界由特殊例子推广到一般情况:(3)结论:二元一次不等式Ax+By+C0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)4二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax+By+C=0同一侧的所有点(),把
6、它的坐标()代入Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C0表示直线哪一侧的平面区域.(特殊地,当C0时,常把原点作为此特殊点)【应用举例】例1 画出不等式表示的平面区域。解:先画直线(画成虚线).取原点(0,0),代入+4y-4,0+4×0-4=-40,原点在表示的平面区域内,不等式表示的区域如图:归纳:画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法。特殊地,当时,常把原点作为此特殊点。变式1、画出不等式所表示的平面区域。变式2、画出不等式所表示的平面区域。例2 用平
7、面区域表示.不等式组的解集。分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。解:不等式表示直线右下方的区域,表示直线右上方的区域,取两区域重叠的部分,如图的阴影部分就表示原不等式组的解集。归纳:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。变式1、画出不等式表示的平面区域。变式2、由直线,和围成的三角形区域(包括边界)用不等式可表示为 。3.随堂练习1、课本第97页的练习1、2、34.课时小结1二元一次不等式表示的平面区域2二元一次不等式表示哪个平面区域的判断方法3二元一次不等式
8、组表示的平面区域5.评价设计课本第105页习题3.3A组的第1题【板书设计】【授后记】 第 周第 课时 授课时间:20 年 月 日(星期 )课题: §二元一次不等式(组)与平面区域第2课时授课类型:新授课【教学目标】1知识与技能:巩固二元一次不等式和二元一次不等式组所表示的平面区域;能根据实际问题中的已知条件,找出约束条件;2过程与方法:经历把实际问题抽象为数学问题的过程,体会集合、化归、数形结合的数学思想;3情态与价值:结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新。【教学重点】理解二元一次不等式表示平面区域并能把不等式(组)所表示的平面区域画出来;【教学难点
9、】把实际问题抽象化,用二元一次不等式(组)表示平面区域。【教学过程】1.课题导入复习引入二元一次不等式Ax+By+C0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)判断方法:由于对在直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C0表示直线哪一侧的平面区域.(特殊地,当C0时,常把原点作为此特殊点)。随堂练习11、画出不等式2+y-60表示的平面区域.2、画出不等式组表示的平面区
10、域。2.讲授新课【应用举例】例3 某人准备投资 1 200万兴办一所完全中学,对教育市场进行调查后,他得到了下面的数据表格(以班级为单位):学段班级学生人数配备教师数硬件建设/万元教师年薪/万元初中45226/班2/人高中40354/班2/人分别用数学关系式和图形表示上述的限制条件。解:设开设初中班x个,开设高中班y个,根据题意,总共招生班数应限制在20-30之间,所以有考虑到所投资金的限制,得到即 另外,开设的班数不能为负,则把上面的四个不等式合在一起,得到:用图形表示这个限制条件,得到如图的平面区域(阴影部分)例4 一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐18
11、t;生产1车皮乙种肥料需要的主要原料是磷酸盐1t,硝酸盐15t,现库存磷酸盐10t、硝酸盐66t,在此基础上生产两种混合肥料。列出满足生产条件的数学关系式,并画出相应的平面区域。解:设x,y分别为计划生产甲乙两种混合肥料的车皮数,于是满足以下条件:在直角坐标系中可表示成如图的平面区域(阴影部分)。补充例题例1、画出下列不等式表示的区域(1) ; (2) 分析:(1)转化为等价的不等式组; (2)注意到不等式的传递性,由,得,又用代,不等式仍成立,区域关于轴对称。解:(1)或矛盾无解,故点在一带形区域内(含边界)。(2) 由,得;当时,有点在一条形区域内(边界);当,由对称性得出。指出:把非规范
12、形式等价转化为规范不等式组形式便于求解例2、利用区域求不等式组的整数解分析:不等式组的实数解集为三条直线,所围成的三角形区域内部(不含边界)。设,求得区域内点横坐标范围,取出的所有整数值,再代回原不等式组转化为的一元不等式组得出相应的的整数值。解:设,。于是看出区域内点的横坐标在内,取1,2,3,当1时,代入原不等式组有,得2,区域内有整点(1,-2)。同理可求得另外三个整点(2,0),(2,-1),(3,-1)。指出:求不等式的整数解即求区域内的整点是教学中的难点,它为线性规划中求最优整数解作铺垫。常有两种处理方法,一种是通过打出网络求整点;另一种是本题解答中所采用的,先确定区域内点的横坐标
13、的范围,确定的所有整数值,再代回原不等式组,得出的一元一次不等式组,再确定的所有整数值,即先固定,再用制约。3.随堂练习21(1); (2); (3)2画出不等式组表示的平面区域3课本第97页的练习44.课时小结进一步熟悉用不等式(组)的解集表示的平面区域。5.评价设计1、课本第105页习题3.3B组的第1、2题【板书设计】【授后记】 第 周第 课时 授课时间:20 年 月 日(星期 )课题: §简单的线性规划第3课时授课类型:新授课【教学目标】1知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划
14、问题的图解法,并能应用它解决一些简单的实际问题;2过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;3情态与价值:培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力。【教学重点】用图解法解决简单的线性规划问题【教学难点】准确求得线性规划问题的最优解【教学过程】1.课题导入复习提问1、二元一次不等式在平面直角坐标系中表示什么图形?2、怎样画二元一次不等式(组)所表示的平面区域?应注意哪些事项?3、熟记“直线定界、特殊点定域”方法的内涵。2.讲授新课在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。
15、1、下面我们就来看有关与生产安排的一个问题:引例:某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,该厂所有可能的日生产安排是什么?(1)用不等式组表示问题中的限制条件:设甲、乙两种产品分别生产x、y件,又已知条件可得二元一次不等式组: .(1)(2)画出不等式组所表示的平面区域:如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。(3)提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大
16、?(4)尝试解答:设生产甲产品x件,乙产品y件时,工厂获得的利润为z,则z=2x+3y.这样,上述问题就转化为:当x,y满足不等式(1)并且为非负整数时,z的最大值是多少?把z=2x+3y变形为,这是斜率为,在y轴上的截距为的直线。当z变化时,可以得到一族互相平行的直线,如图,由于这些直线的斜率是确定的,因此只要给定一个点,(例如(1,2),就能确定一条直线(),这说明,截距可以由平面内的一个点的坐标唯一确定。可以看到,直线与不等式组(1)的区域的交点满足不等式组(1),而且当截距最大时,z取得最大值。因此,问题可以转化为当直线与不等式组(1)确定的平面区域有公共点时,在区域内找一个点P,使直
17、线经过点P时截距最大。(5)获得结果:由上图可以看出,当实现金国直线x=4与直线x+2y-8=0的交点M(4,2)时,截距的值最大,最大值为,这时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元。2、线性规划的有关概念:线性约束条件:在上述问题中,不等式组是一组变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,故又称线性约束条件线性目标函数:关于x、y的一次式z=2x+y是欲达到最大值或最小值所涉及的变量x、y的解析式,叫线性目标函数线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题可行解、可行域和最优
18、解:满足线性约束条件的解(x,y)叫可行解由所有可行解组成的集合叫做可行域使目标函数取得最大或最小值的可行解叫线性规划问题的最优解3、 变换条件,加深理解探究:课本第100页的探究活动(1) 在上述问题中,如果生产一件甲产品获利3万元,每生产一件乙产品获利2万元,有应当如何安排生产才能获得最大利润?在换几组数据试试。(2) 有上述过程,你能得出最优解与可行域之间的关系吗?3.随堂练习1请同学们结合课本P103练习1来掌握图解法解决简单的线性规划问题.(1)求z=2x+y的最大值,使式中的x、y 满足约束条件解:不等式组表示的平面区域如图所示:当x=0,y=0时,z=2x+y=0点(0,0)在直
19、线:2x+y=0上.作一组与直线平行的直线:2x+y=t,tR. 可知,在经过不等式组所表示的公共区域内的点且平行于的直线中,以经过点A(2,-1)的直线所对应的t最大.所以zmax=2×2-1=3.(2)求z=3x+5y的最大值和最小值,使式中的x、y满足约束条件解:不等式组所表示的平面区域如图所示:从图示可知,直线3x+5y=t在经过不等式组所表示的公共区域内的点时,以经过点(-2,-1)的直线所对应的t最小,以经过点()的直线所对应的t最大.所以zmin=3×(-2)+×(-1)=-11.zmax=3×+5×=144.课时小结用图解法解决
20、简单的线性规划问题的基本步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解5.评价设计课本第105页习题A组的第2题.【板书设计】【授后记】 第 周第 课时 授课时间:20 年 月 日(星期 )课题: §简单的线性规划第4课时授课类型:新授课【教学目标】1知识与技能:掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题;2过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;3情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科
21、学道德。【教学重点】利用图解法求得线性规划问题的最优解;【教学难点】把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。【教学过程】1.课题导入复习引入: 1、二元一次不等式Ax+By+C0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域(虚线表示区域不包括边界直线)2、目标函数, 线性目标函数,线性规划问题,可行解,可行域, 最优解:2.讲授新课线性规划在实际中的应用:线性规划的理论和方法主要在两类问题中得到应用,一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定
22、一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务下面我们就来看看线性规划在实际中的一些应用:范例讲解例5 营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪,1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元。为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?指出:要完成一项确定的任务,如何统筹安排,尽量做到用最少的资源去完成它,这是线
23、性规划中最常见的问题之一.例6 在上一节例3中,若根据有关部门的规定,初中每人每年可收取学费1 600元,高中每人每年可收取学费2 700元。那么开设初中班和高中班各多少个,每年收取的学费总额最高多?指出:资源数量一定,如何安排使用它们,使得效益最好,这是线性规划中常见的问题之一结合上述两例子总结归纳一下解决这类问题的思路和方法:简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解3.随堂练习课本第103页
24、练习24.课时小结线性规划的两类重要实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数。然后,用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解,最后,要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解。 5.评价设计课本第105页习题3.3A组的第3题【板书设计】【授后记】 第 周第 课时 授课时间:20 年 月 日(星期 )课题: §简单的线性规划第5课时授课类型:新授课【教学目标】1知识与技能:掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题;2过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;3情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。【教学重点】利用图解法求得线性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年注册建筑师考试题及答案详解
- 2025年跨文化交际能力考试题及答案
- 古建筑修复工程合同终止及文化遗产保护协议
- 商业秘密保护与责任合同:知识产权保障
- 影视作品替身演员演出合同
- 青少年音乐制作与艺术实践合同
- 网络安全漏洞扫描数据分析系统定制租赁服务合同
- 专利权质押担保融资合同书
- 航空影像制作私人直升机航拍素材版权合作协议
- 乡村花园使用权及乡村旅游项目合作协议
- 博物馆物业服务投标方案(技术方案)
- 2024年高级电工职业鉴定考试题库-下(多选、判断题)
- GB/T 32399-2024信息技术云计算参考架构
- 2024-2030年中国邮轮行业市场发展状况及发展前景与趋势研究报告
- 文言文二则 囊萤夜读 公开课一等奖创新教学设计+说课稿+(共25张)
- 第18课 科技文化成就 新授课课件-2024-2025学年统编版八年级历史下册
- 孵化器与产业园区协同发展
- 小学综合实践活动《来之不易的粮食》课件
- 呼和浩特市消防救援支队招聘政府专职消防员笔试真题2022
- 施工方案防火门卷帘门
- 畜牧兽医考试题库
评论
0/150
提交评论