




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Matlab基于腐蚀和膨胀的边缘检测文/天神 一.课题背景:形态学运算只针对二值图像(二进制图像),并依据数学形态学(Mathermatical Morphogy)集合论方法发展起来的图像处理方法,起源于岩相对岩石结构的定量描述工作,在数字图像处理和机器视觉领域中得到了广泛的应用,形成了一种独特的数字图像分析方法和理论。数学形态学是图像处理和模式识领域的新方法,其基本思想是:用具有一定形态的结构元素去量度和提取图像中的对应形状,以达到图像分析和识别的目的。优势有以下几点:有效滤除噪声,保留图像中原有信息,算法易于用并行处理方法有效实现(包括硬件实现),基于数学形态学的边缘信息提取处理
2、优于基于微分运算的边缘提取算法,提取的边缘比较平滑,提取的图像骨架也比较连续,断点少。 二、课题相关原理:形态学基本运算:特殊领域运算形式结构元素(Structure Element),在每个像素位置上与二值图像对应的区域进行特定的逻辑运算。运算结果是输出图像的相应像素。运算效果取决于结构元素大小内容以及逻辑运算性质。常见形态学运算有腐蚀(Erosion)和膨胀(Dilation)两种。集合论是数学形态学的基础。有集合、元素、子集、并集、补集、位移、映像(镜像对称)、差集等集合的基本概念。对象和结构元素的3种关系:对象X(Object)、结构元素B(Structure Element
3、)B include in X 包含于 、B hit X 击中(不全包含) 、B miss X 击不中 (不包含)平移、对称集:Bx=Uyx+y B=Uy-y腐蚀:一种消除边界点,使边界向内部收缩的过程。利用它可以消除小而且无意义的物体。B对X腐蚀所产生的二值图像E是满足以下条件的点(x,y)的集合:如果B的原点平移到点(x,y),那么B将完全包含于X中。膨胀:将与物体接触的所有背景点合并到该物体中,使边界向外部扩张的过程。利用它可以填补物体中的空洞。B对X膨胀所产生的二值图像D是满足以下条件的点(x,y)的集合:如果B的原点平移到点(x,y),那么它与X的交集非空。腐
4、蚀和膨胀运算中存在对偶原理:XB,它是所有满足以下条件的点X'的集合:在B中存在一点y,而且在X中存在一点x,使得x'=x+y。基本运算:1.开运算(先腐蚀后膨胀的过程):利用它可以消除小物体,在纤细点处分离物体,平滑较大物体边界,但同时并不明显改变原来物体的面积。OPEN(X,B)2.闭运算(先膨胀后腐蚀的过程):利用它可以填充物体内细小空洞,连接临近物体、平滑其边界,但同时并不明显改变原来物体的面积。CLOSE(X,B)通常由于噪声的影响,图像在阈值化后所得到的边界通常都很不平滑,物体区域具有一些噪声孔,而背景区域上散布着一些小的噪声物体,连续的开和闭运算可以有效的改善这种
5、情况,而有时,我们需要经过多次腐蚀之,后再加上相同次数的膨胀,才能产生比较好的处理效果。另外两种是 3.击中,击不中变换HMT(模板严格匹配) 以及 4.边缘和骨架(Boundary and Skeleton) 三、腐蚀和膨胀的Matlab实现:腐蚀:删除对象边界某些像素。膨胀:给图像中的对象边界添加像素。在操作中,输出图像中所有给定像素的状态都是通过对输入图像的相应像素及邻域使用一定的规则进行确定。在膨胀操作时,输出像素值是输入图像相应像素邻域内所有像素的最大值。在二进制图像中,如果任何像素值为1,那么对应的输出像素值为1;而在腐蚀操作中,输出像素值是输入图像相应像素邻域内所有像素
6、的最小值。在二进制图像中,如果任何一个像素值为0,那么对应的输出像素值为0。结构元素的原点定义在对输入图像感兴趣的位置。对于图像边缘的像素,由结构元素定义的邻域将会有一部分位于图像边界之外。为了有效处理边界像素,进行形态学运算的函数通常都会给出超出图像、未指定数值的像素指定一个数值,这样就类似于函数给图像填充了额外的行和列。对于膨胀和腐蚀操作,它们对像素进行填充的值是不同的。对于二进制图像和灰度图像,膨胀和腐蚀操作使用的填充方法如下表:腐蚀和膨胀填充图像规则表 规
7、 则腐蚀 超出图像边界的像素值定义为该数据类型允许的最大值,对于二进制图像,这些像素值设置为1;对于灰度图像,unit8类型的最小值也为255。膨胀 超出图像边界的像素值定义为该数据类型允许的最小值,对于二进制图像,这些像素值设置为0;对于灰度图像,unit8类型的最小值也为0。 通过对膨胀操作使用最小值填充和对腐蚀
8、操作使用最大值填充,可以有效地消除边界效应(输出图像靠近边界处的区域与图像其它部分不连续)。否则,如果腐蚀操作使用最小值进行填充,则进行腐蚀操作后,输出图像会围绕着一个黑色边框。结构元素:膨胀和腐蚀操作的最基本组成部分,用于测试输出图像,通常要比待处理的图像小的多。二维平面结构元素由一个数值为0或1的矩阵组成。结构元素的原点指定了图像中需要处理的像素范围,结构元素中数值为1的点决定结构元素的邻域像素在进行膨胀或腐蚀操作时是否需要参与计算。三维或非平面的结构元素使用0,1定义结构元素在x和y平面上的范围,第三维z定义高度。(1)任意大小和维数的结构元素B原点坐标的获取:>> orig
9、in = floor(size(nhood)+1)/2) 其中nhood 是指结构元素定义的邻域(STREL对象的属性nhood)(2)创建结构元素:(strel函数来创建任意大小和形状的STREL 对象,支持如线形line、钻石形diamond、圆盘形disk、球形ball等许多种常用的形状)>> se = strel ('diamond' ,3)se = Flat STREL object containing 25 neighbors.Decomposition: 3 STREL objects containing
10、a total of 13 neighborsNeighborhood: 0 0 0 1 0 0 0 0 0 1
11、0; 1 1 0 0 0 1 1 1 1 1 0
12、 1 1 1 1 1 1 1 0 1 1 1 1
13、 1 0 0 0 1 1 1 0 0 0 0
14、160; 0 1 0 0 0 % se返回了结构元素的有关信息。(3) 结构元素的分解为了提高执行效率,stel函数可能会将结构元素拆为较小的块,这种技术称为结构元素的分解。例如要对一个11×11的正方形结构元素进行膨胀操作,可以首先对1×11的结构元素进行膨胀操作,然后再对11×1的结构元素进行膨胀,通过这样的分解,在理论上可以使执行速度提高6.5倍。
15、对圆盘形和球形结构元素进行分解,其结构是近似的,而对于其他形状的分解,得到的分解结果是精确的。可以调用getsequence函数来查看分解所得的结构元素序列。>> seq=getsequence(sel) seq = 4x1 array of STREL objects >> seq(1) ans = Flat STREL object containing 5 neighbors.Neighborhood: 0 1
16、; 0 1 1 1 0 1 0 >> seq(2) ans = Flat STREL object containing 4 neighbors.Neighborhood: 0
17、; 1 0 1 0 1 0 1 0 >> seq(3) ans = Flat STREL object containing 4 neighbors.Neighborhood:
18、; 0 0 1 0 0 0 0 0 0 0 1 &
19、#160; 0 0 0 1 0 0 0 0 0 0 0 1 &
20、#160; 0 0 >> seq(4) ans = Flat STREL object containing 4 neighbors.Neighborhood: 0 1 0 1 0 1 &
21、#160; 0 1 0 1.图像膨胀的Matlab实现:可以使用imdilate函数进行图像膨胀,imdilate函数需要两个基本输入参数,即待处理的输入图像和结构元素对象。结构元素对象可以是strel函数返回的对象,也可以是一个自己定义的表示结构元素邻域的二进制矩阵。此外,imdilate还可以接受两个可选参数:PADOPT(padopt) 影响输出图片的大小、PACKOPT(packopt).说明输入图像是否为打包的二值图像(二进制图像)。举个实例如下:步骤1,
22、首先创建一个包含矩形对象的二值图像矩阵。>> BW=zeros(9,10);>> BW(4:6,4:7) =1BW = 0 0 0 0 0 0 0 0
23、60; 0 0 0 0 0 0 0 0 0 0 0 0
24、60; 0 0 0 0 0 0 0 0 0 0 0
25、; 0 0 1 1 1 1 0 0 0 0 0 0
26、; 1 1 1 1 0 0 0 0 0 0 1
27、1 1 1 0 0 0 0 0 0 0 0 0 &
28、#160; 0 0 0 0 0 0 0 0 0 0 0 0&
29、#160; 0 0 0 0 0 0 0 0 0 0 0
30、60; 0步骤2,使用一个3×3的正方形结构元素对象对创建的图像进行膨胀。>> SE=strel('square',3)SE = Flat STREL object containing 9 neighbors.Neighborhood: 1 1 1 1 1
31、60; 1 1 1 1步骤3,将图像BW和结构元素SE传递给imdilate函数。>> BW2=imdilate(BW,SE)BW2 = 0 0 0 0 0
32、 0 0 0 0 0 0 0 0 0 0 0 0
33、 0 0 0 0 0 1 1 1 1 1 1 0
34、 0 0 0 1 1 1 1 1 1 0 0
35、160; 0 0 1 1 1 1 1 1 0 0 0 0
36、160; 1 1 1 1 1 1 0 0 0 0 1
37、0; 1 1 1 1 1 0 0 0 0 0 0 0
38、0; 0 0 0 0 0 0 0 0 0 0 0
39、 0 0 0 0步骤4,显示结果。>> imshow(BW,'notruesize')>> imshow(BW2,'notruesize')膨胀前后效果图:2.图像腐蚀的Matlab实现:可以使用imerode函数进行图像腐蚀。imerode函数需要两个基本输入参数:待处理的输入图像以及结构元素对象。此外,imerode函数还可以接受3个可选参数:PADOPT(padopt) 影响输出
40、图片的大小、PACKOPT(packopt).说明输入图像是否为打包的二值图像(二进制图像)。M指定原始图像的行数。以下程序示例说明了如何对某一副具体图像进行腐蚀操作,腐蚀前后的效果对比如图末。步骤1,读取图像cameraman.tif (该图像是Matlab当前目录下自带的图片)>> BW1=imread('cameraman.tif');步骤2,创建一个任意形状的结构元素对象>> SE=strel('arbitrary',eye(5);步骤3,以图像BW1和结构元素SE为参数调用imerode函数进行腐蚀操作。>> BW2
41、=imerode(BW1,SE);步骤4,显示操作结果>> imshow(BW1)>> figure,imshow(BW2) 图像cameraman.tif 腐蚀前后的效果对比: 3.膨胀和腐蚀联合操作(图像开运算操作):下面以图像开启为例,说明如何综合使用imdilate和imerode这两个函数,实现图像处理操作。步骤1,创建结构元素:>> clear;close all>> SE = strel('rectangle',40 30); %注意:结构元素必须具有适当的大小,既可以删电
42、流线又可以删除矩形.步骤2,使用结构元素腐蚀图像: %将会删除所有直线,但也会缩减矩形>> BW1=imread('circbw.tif');>> BW2=imerode(BW1,SE);>> imshow(BW2)>> figure,imshow(BW1)步骤3,恢复矩形为原有大小,使用相同的结构元素对腐蚀过的图像进行膨胀.>> BW3=imdilate(BW2,SE);>> figure,imshow(BW3)最终效果如下图:a.原始图像->b.腐蚀后的图像-&
43、gt;c.膨胀后的图像4.基于膨胀与腐蚀的形态操作骨架化和边缘检测(1)骨架化:某些应用中,针对一副图像,希望对图像中所有对象简化为线条,但不修改图像的基本结构,保留图像基本轮廓,这个过程就是所谓的骨架化。提供了专门的函数bwmorph,可以实现骨架化操作。>> clear;close all>> BW1=imread('circbw.tif');>> BW2=bwmorph(BW1,'skel',Inf);>> imshow(BW1)>> figure,imshow(BW2)(2)边缘检测对
44、于一副灰度二进制图像,如果图像像素值为1,则该像素的状态为ON,如果其像素值为0,则该像素的状态为OFF。在一副图像中,如果图像某个像素满足以下两个条件:1.该像素状态为ON,2.该像素邻域中有一个或多个像素状态为OFF。则认为该像素为边缘像素。Matlab中提供了专门的函数bwperim,可以用于判断一副二进制图像中的哪些像素为边缘像素。以下程序代码示例就是利用bwperim函数,对图像circbw.tif进行边缘检测,其边缘像素检测效果如尾图。>> clear;close all>> BW1=imread('circbw.tif');>> BW2=bwperim(BW1);>> imshow(BW1)>> figure,imshow(BW2)>> 基于腐蚀和膨胀的形态操作函数如下:bwhitmiss 图像逻辑"与"操作,该函数使用一个结构元素对图像进行腐蚀操作后,再使用第二个结构元素对图像进行腐蚀操作i
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 烧结矿项目可行性研究报告
- 金属闪光漆项目可行性研究报告
- 环保型防蚊剂项目可行性研究报告
- 高速公路雾区诱导设施完善工程可行性研究报告
- 2026年高考语文总复习文言文专题-教师版-文言断句
- 防汛措施应急知识培训课件
- Unit 1 Happy Holiday Section A (Pronunciation~2f) (内嵌音视频) 人教版(2024)初中英语八年级上册
- 物业租赁合同格式解析
- 年房屋买卖合同范本4篇
- 金融借款合同范本4篇
- 化工设备使用与维护课程标准
- 房产中介行业智能经纪人与信息共享平台方案
- 工程造价咨询服务投标方案(专家团队版-)
- 2024-2025学年统编版小学道德与法治一年级上册全册教案及反思
- 山东省城市园林绿化乡土适生植物名录2024
- 公司管理安全奖惩制度(2篇)
- 2025中水北方勘测设计研究限责任公司校园招聘管理单位笔试遴选500模拟题附带答案详解
- 《质量管理体系培训》课件
- (高职院校)健康养老照护大赛理论考试题库500题(含答案)
- 宫颈癌手术个案护理
- 大学人工智能+教学试点课程立项建设申报书
评论
0/150
提交评论