2011年下半年自学考试法律专业本科论文答辩具体安排_第1页
2011年下半年自学考试法律专业本科论文答辩具体安排_第2页
2011年下半年自学考试法律专业本科论文答辩具体安排_第3页
2011年下半年自学考试法律专业本科论文答辩具体安排_第4页
2011年下半年自学考试法律专业本科论文答辩具体安排_第5页
已阅读5页,还剩4页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、全国2011年4月高等教育自学考试概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1设A,B,C为随机事件,则事件“A,B,C都不发生”可表示为( )AB.BCCABCD.2设随机事件A与B相互独立,且P(A)=,P(B)=,则P(AB)=( )AB. CD.3设随机变量XB(3,0.4),则PX1=( )A.0.352B.0.432C.0.784D.0.936X-125P0.20.350.454.已知随机变量X的分布律为 ,则P-

2、21=0.4013,(x)为标准正态分布函数,则(0.25)=_.15.设二维随机变量(X,Y)的分布律为YX01010.10.80.10则PX=0,Y=1=_.16.设二维随机变量(X,Y)的概率密度为f(x,y) =则PX+Y1=_.17.设随机变量X与Y相互独立,X在区间0,3上服从均匀分布,Y服从参数为4的指数分布,则D(X+Y)=_.18.设X为随机变量,E(X+3)=5,D(2X)=4,则E(X2)=_.19.设随机变量X1,X2,Xn, 相互独立同分布,且E(Xi)=则_.20.设随机变量X-2(n),(n)是自由度为n的2分布的分位数,则Px=_.21.设总体XN(),x1,x

3、2,x8为来自总体X的一个样本,为样本均值,则D()=_.22.设总体XN(),x1,x2,xn为来自总体X的一个样本,为样本均值,s2为样本方差,则_.23.设总体X的概率密度为f(x;),其中(X)=, x1,x2,xn为来自总体X的一个样本,为样本均值.若c为的无偏估计,则常数c=_.24.设总体XN(),已知,x1,x2,xn为来自总体X的一个样本,为样本均值,则参数的置信度为1-的置信区间为_.25.设总体XN(,x1,x2,x16为来自总体X的一个样本,为样本均值,则检验假设H0:时应采用的检验统计量为_.三、计算题(本大题共2小题,每小题8分,共16分)26.盒中有3个新球、1个

4、旧球,第一次使用时从中随机取一个,用后放回,第二次使用时从中随机取两个,事件A表示“第二次取到的全是新球”,求P(A).27.设总体X的概率密度为,其中未知参数 x1,x2,xn为来自总体X的一个样本.求的极大似然估计.四、综合题(本大题共2小题,每小题12分,共24分)28.设随机变量x的概率密度为求:(1)常数a,b;(2)X的分布函数F(x);(3)E(X).29.设二维随机变量(X,Y)的分布律为YX-303-30300.200.20.20.200.20求:(1)(X,Y)分别关于X,Y的边缘分布律;(2)D(X),D(Y),Cov(X,Y).五、应用题(10分)30.某种装置中有两个

5、相互独立工作的电子元件,其中一个电子元件的使用寿命X(单位:小时)服从参数的指数分布,另一个电子元件的使用寿命Y(单位:小时)服从参数的指数分布.试求:(1)(X,Y)的概率密度;(2)E(X),E(Y);(3)两个电子元件的使用寿命均大于1200小时的概率.全国2011年4月高等教育自学考试概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)1设A,B,C为随机事件,则事件“A,B,C都不发生”可表示为( )A(都不发生)B.BCCABCD.(至少一个不发生)2设随机事件A与B相互独立,且P(A)=,P(B)=,则P(AB)=( )AB.

6、 CD.3设随机变量XB(3,0.4),则PX1=( )A.0.352B.0.432C.0.784D.0.936X-125P0.20.350.454.已知随机变量X的分布律为 ,则P-21=0.4013,(x)为标准正态分布函数,则(0.25)=0.5987.15.设二维随机变量(X,Y)的分布律为YX01010.10.80.10则PX=0,Y=1=0.116.设二维随机变量(X,Y)的概率密度为f(x,y) =则PX+Y1=0.5.17.设随机变量X与Y相互独立,X在区间0,3上服从均匀分布,Y服从参数为4的指数分布,则D(X+Y)=13/16.18.设X为随机变量,E(X+3)=5,D(2

7、X)=4,则E(X2)=5.19.设随机变量X1,X2,Xn, 相互独立同分布,且E(Xi)=则_.20.设随机变量X-2(n),(n)是自由度为n的2分布的分位数,则Px=_.21.设总体XN(),x1,x2,x8为来自总体X的一个样本,为样本均值,则D()=_.22.设总体XN(),x1,x2,xn为来自总体X的一个样本,为样本均值,s2为样本方差,则_.23.设总体X的概率密度为f(x;),其中(X)=, x1,x2,xn为来自总体X的一个样本,为样本均值.若c为的无偏估计,则常数c=_.24.设总体XN(),已知,x1,x2,xn为来自总体X的一个样本,为样本均值,则参数的置信度为1-

8、的置信区间为_.25.设总体XN(,x1,x2,x16为来自总体X的一个样本,为样本均值,则检验假设H0:时应采用的检验统计量为_.三、计算题(本大题共2小题,每小题8分,共16分)26.盒中有3个新球、1个旧球,第一次使用时从中随机取一个,用后放回,第二次使用时从中随机取两个,事件A表示“第二次取到的全是新球”,求P(A).27.设总体X的概率密度为,其中未知参数 x1,x2,xn为来自总体X的一个样本.求的极大似然估计.四、综合题(本大题共2小题,每小题12分,共24分)28.设随机变量x的概率密度为求:(1)常数a,b;(2)X的分布函数F(x);(3)E(X).29.设二维随机变量(X,Y)的分布律为YX-303-30300.200.20.20.200.20求:(1)(X,Y)分别关于X,Y的边缘分布律;(2)D(X),D(Y),Cov(X,Y).五、应用题(10分)30.某种装置中有两

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论