




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、基于LBP的人脸识别算法研究一、应用背景随着社会的发展以及技术的进步,人们对快速、高效的自动身份验证的要求日益迫切,生物识别技术在科研领域得到了极大的重视和发展。在人与人的接触中,人脸所包含的视觉信息占据了重要地位,它无疑是区分人与人之间差异的最重要特征之一。相对于指纹、虹膜、掌纹、步态、笔迹、声纹等生物特征,利用人脸来识别具有不可比拟的优势:操作隐蔽,特别适用于安全、监控、和抓逃工作;非接触式采集,无侵犯性,容易接受;方便、快捷、强大的实时追踪能力;符合人类识别习惯,交互性强;应用摄像头即可完成图像采集,设备成本较低。人脸识别属于计算机科研领域的一项热门技术,它是一种基于生物特征的识别技术,
2、利用计算机从图像或图像序列中检测出人脸,并判断其身份。人脸识别目前主要运用在如下三个方面:第一,刑侦破案方面。例如,公安部门获得案犯的照片之后,可以利用人脸识别技术在存储罪犯照片的数据库中找出最相像的人,即嫌疑犯。第二,证件验证方面。如身份证、驾驶执照以及其他很多证件上都有照片,现在这些证件多是人工验证的,如果应用人脸识别技术,这项任务就可以交给机器去完成,从而实现自动化智能管理。第三,人口控制方面。此应用范围很广,例如可以设在楼宇单位或者私人住宅入口的安全检查,也可以是计算机系统或者情报系统等的入口检查。世界上很多国家都在积极地开展对人脸识别技术的相关研究,不同的研究机构或研究人员按照不同的
3、划分标准,对人脸识别的研究内容的分类不尽相同。在此处按其所研究得具体技术的范围可以大致将人脸识别分为如下四个方面的内容来进行阐述:(1)人脸检测,主要的方法有:基于轮廓(或肤色等)信息人脸检测方法,基于 Adaboost算法人脸检测方法,基于支持向量机(SVM)人脸检测方法以及基于神经网络的人脸检测方法等;(2)人脸特征描述与提取即特征提取,主要方法:基于局部二值模式纹理特征提取方法,基于人脸几何特征的特征提取方法,还有基于主成分特征(PCA)特征提取方法,基于独立元特征的特征提取算法, 如 Gabor等,还有 2D 和 3D 形变模型方法等;(3)人脸特征降维,主要方法:线性降维方法如主成分
4、分析 PCA和 LDA (Linear Discriminate Analysis) 等发展到非线性降维方法如局部线性嵌入(LLE) 、等距嵌入(ISOMAP)、拉普拉斯特征映射(LE)、局部切空间调整(LTSA)、基于黎曼法坐标的快速流形学习(FMLBRNC)等;(4)人脸属性特征分类与人脸识别,主要的技术方法包括:最近邻和 K 近邻分类,线性判别方法(LDA),核线性判别方法(K-LDA),支持向量机方法(SVM),人工神经网络法(ANN),隐马尔可夫模型方法(HMM)等;人脸识别算法的选择深受人脸识别系统具体应用的环境的影响,同时不同的应用场景对人脸识别系统也有着不同的要求,因此不可能存
5、在通用的人脸识别算法,而是需要综合所有的情况选择最适合的人脸识别算法。二、理论依据2.1 基于几何特征的人脸识别方法基于几何特征的人脸识别方法是最早出现的人脸识别方法之一,主要是利用人脸的五官的形状以及器官间的几何位置的关系,如嘴巴、鼻子、眼睛等人脸器官的局部形状特征以及其几何位置关系特征进行识别。几何特征的人脸识别方法主要是采用人脸器官的结构的先验知识来提取以器官形状以及器官间的空间位置关系为基础的特征,构成人脸特征向量,此类方法的实质就是提取出的几何特征向量间的匹配。基于几何特征的人脸识别方法原理比较简单,只是用到人脸器官的形状特征和器官间几何特征,算法思想也容易理解,但是识别效果不理想同
6、时鲁棒性也较差。原因有二:第一,只是简单的采用人脸器官的形状特征和器官间几何特征,人脸图像中保留的信息量过少,根本就不利于后期的人脸识别工作的展开;第二,由于人脸容易受环境因素的影响如光照、物体遮挡、姿态等,大部分情况下是很难进行五官特征的精确分割和提取工作。2.2 基于统计特征的人脸识别方法由于人脸图像容易受到环境因素的影响如光照、障碍物遮挡、姿态变化和表情变化等,另外人脸图像中富含丰富的特征信息,如采用像基于几何特征的方法很难去准确的描述人脸图像信息。而近年来比较流行的基于统计特征的人脸识别方法,可以得到不错的识别效果。基于统计特征的人脸识别方法通常是采用某种映射方法将原图像空间中的像素点
7、映射到另一个投影空间中去,而原空间向量称之为空间域向量,被映射 到的投影子空间的那个向量被称之为变换域向量,此方法的目的也显而易见,便是寻找一种两个空间域变换的最优表示,可以把这个经过空间域变换后的优化的那个向量称之为特征图像,经过空间域的变换使得每类样本在变换后的分布更加具有规律可循,当然对于进行人脸识别也更加有利。基于统计特征的人脸识别的方法具有代表性的有主成分分析方法(PCA)、独立分量分析(ICA)以及线性鉴别分析方法(LDA)。(1)主成分分析方法(PCA)主成分分析(简称 PCA)是一种常用的基于变量协方差矩阵对信息进行处理、压缩和抽提的有效方法。我们从数学角度来进行定义解释 PC
8、A 算法:假设给定 N 个点,然后将这些高维空间(D维)里的点被映射到低维空间(d维)后对应的点为,此处dD,此时从将向量从D维空间映射到d维空间。PCA 算法核心思想是通过寻找一组最优的单位正交子空间,而用来表征此单位正交子空间的单位正交向量则称之为 PCA 的主成分,让原样本空间的向量通过主成分的线性组合转换到此正交空间中来,使得新的样本和原样本之间满足 PCA 模型定义的优化标准,比如最小化重构误差、距离保持和最大化方差保留等,而最常用的优化标准是最小化重构误差。PCA 方法最大的优势就是可以将图像的特征进行降维,降维后进行识别,可以大大的加快人脸识别的速度。PCA 方法的缺点也很明显,
9、它要求人脸图像都是正面人脸,不这样的话,PCA 算法的人脸识别效果就会大不如人意,这也是该算法的最大不足之处。(2)独立分量分析(ICA)独立主元分析法 (Independent Component Analysis,ICA)主要应用于信号分离技术中,采用 ICA 方法可以得到信号中的二阶和高阶的统计信息,而对于人脸图像来讲,许多重要局部纹理信息包含在高阶统计信息中,所以 ICA 被尝试着用来描述人脸图像中的高阶局部纹理信息。独立分量分析计算量比较大且计算复杂,因此该算法实时性不足;同时对于独立分量的选择,由于目前还没有一个较好的算法来对其进行选择,一般都是依据经验来选取,这也一定程度上限制了
10、 ICA 算法在人脸识别领域的应用。(3)线性鉴别分析方法(LDA)基于线性鉴别分析的人脸识别方法的基本思想是寻找一个适当的Fisher函数,使得原样本空间在该Fisher函数的方向上的投影后的样本空间达到最优,即在投影后达到使得样本的类间离散度最大和类内离散度最小的目的。LDA方法的目标是通过在高维特征空间中去寻找最优的低维特征,所选择最优的低维特征需满足样本类间离散度和样本类内离散度的比值达到最大。LDA 算法应用于人脸识别领域时,仍然存在图像列向量维数过高的问题,这使得很难甚至是无法求解 LDA 的特征方程。2.3 基于机器学习的人脸识别方法基于机器学习的人脸识别算法中,用于分类和识别的
11、人脸的特征是通过机器学习算法从预先建立好的人脸样本特征库中学习而来,当然这些训练学习得到的人脸特征的分布规律和特征的判别函数会随着所选择的学习算法的不同会有所不同。下面将主要介绍基于人工神经网络的人脸识别学习算法和基于支持向量机的人脸识别学习算法。(1)基于人工神经网络的人脸识别学习算法人工神经网络(artificial neural network,ANN)的人脸识别方法首先将人脸灰度化处理得到人脸的灰度图,然后充分利用了神经网络在表现人脸图像中细微的形状信息方面的优势来描述人脸特征,同这样避免了一般人脸识别方法中需要采取复杂的特征提取工作。ANN 方法很少用在人脸特征提取方面,同时如果样本
12、的类别过大还会出现过拟合和过学习等问题。但是其在人脸图像中细微的形状信息方面的优势,使得 ANN 算法对于特征分类和识别方面有着自己得天独厚的优势。(2)基于支持向量机的人脸识别学习算法支持向量机(support vector machine,SVM)的人脸识别学习算法,是目前最热门的机器学习算法之一,基本的算法的思想是基于结构风险最小化原理寻找最优分类面,该分类面是能够将不同类的样本在样本空间分隔的超平面。SVM是由线性可分的两类分类问题的最优分类面发展而来,对于多类的分类问题,也可以转化为多个二类问题,它的基本思想可以用下图 2-1 的二维情况所示。图 2-1 最大间隔分类超平面在二维线性
13、空间中,线性判别函数的一般形式为:,其中,最优分类线 的方程的规范化形式为:。上图 2-1 中黑空心圆和白空心圆分别代表着不同的两类样本,L是用来划分两类样本的直线,称其为分类线,L1和L2分别为过黑白两类样本的同时离分类线L最近且平行与L的直线,L1和L2两直线间的距离称之为两类样本的分类间隔。而最大间隔分类线是,不但能正确分开不同类的样本,同时分类间隔达到最大值。由直线间的数学定理可证得:L1和L2之间的距离为:,即分类间隔为 。SVM 具有非常好的分类效果,但是如果直接使用 SVM 进行人脸识别,会遇到很大的计算困难,首先遇到的问题便是在训练 SVM 的时候,需要去求解二次规划的问题,该
14、二次规划的问题的求解计算复杂度极高,就目前而言对于二次规划的求解并没有什么很好的方法;其次是当训练样本个数较大时,会得到的大量的支持向量,使分类器计算量过高。2.4 基于局部模式的人脸识别方法在比较理想的外界环境中,上述所提出的倾向于整体的人脸图像识别算法可以达到不错的效果,但是真实的环境中,人脸图像需要受到环境的干扰,比如图像曝光问题、光照问题、人脸表情多变问题以及遮挡问题等,这些都严重的影响着人脸识别算法的识别准确率和识别效率。而人脸局部特征信息如人脸局部的纹理特征、人脸局部灰度特征、人脸局部轮廓特征等对光照、人脸表情变化以及遮挡具有着良好鲁棒性。LBP 特征是描述一个局部区域的纹理特征非
15、常好的方法,本质上来讲,LBP 也是一种统计特征,所以稳定行好,通用性强。它能很好的描述一个局部区域的纹理特征,由于它采用的是统计的方式,所以,有一定的抗旋转能力,能承受一定的光照影响。该特征提取方法,有着良好的效果且它具有旋转不变性和灰度不变性等显著的优点,所以很适合用于人脸识别领域。基于 LBP 算法的人脸识别,可以非常好的对人脸的局部区域的纹理特征进行描述,但是对人脸的整体特征的描述力不足。3、 人脸识别算法设计方案3.1算法总体设计此算法的核心是采用 LBP 算法对人脸区域对纹理特征进行提取然后进行特征分类识别,不过因为人脸区域有显著特征和非显著特征之分,比如人眼、鼻子、嘴唇和眉毛这四
16、大区域所产生的特征占有着整个人脸图像中有利于人脸分类识别的特征的 80%以上,但是这四大区域在人脸图像中所占有的面积却不到 50%,而 LBP 算法本身并无法做到对不同特征区域采用不同的 LBP 算子进行编码。算法首先对人脸区域进行分块,区分出重要特征区域和非重要特征区域然后采用不同模式的 LBP 算子进行特征提取的策略,最后对特征进行降维和分类识别。主要步骤为:第一步:人脸区域划分,从人脸图像中划分出重要区域矩形包括人眼、鼻子、嘴唇和眉毛四大区域矩形,其他的区域归为非重要区域;第二步:分类LBP特征提取,对重要区域采用对纹理信息描述力更强的 LBP 算子进行纹理特征提取,而对非重要区域采用对
17、纹理信息描述力一般的 LBP 算子进行纹理特征提取;第三步:PCA特征降维,对上一步中提取的 LBP 纹理特征进行降维;第四步:SVM分类识别,对降维后的特征进行纹理分类。3.2算法实现3.2.1 人脸区域划分主要是训练采用不同的正负样本库和 Adaboost 算法训练出人眼、鼻子、嘴唇和眉毛四个最优分类器,然后对输入的人脸图像就行检测,检测出对应的区域矩形,然后将这四类特征矩形的坐标输入到第二模块进行 LBP特征提取。3.2.2 分类 LBP 特征提取分类 LBP 特征提取模块除了根据上步中提供的人脸重要区域和非重要区域矩形分别采用不同的 LBP 算子外,对于 LBP 特征提取本身 ALPS
18、 算法拟采用基于 uniform(统一)模式的 LBP 的空间增强直方图算法。图像局部的纹理特征由局部像素灰度值之间的关系来表现,首先,计算图像中每个像素与其局部邻域点在灰度上的二值关系;其次,对二值关系按一定规则加权形成局部二值模式;最后,采用多区域直方图序列作为图像的特征。这种局部纹理特征可由下面T算子进行描述:将二进制 乘以相应的权值2p,然后累加求和就可以得到以点为中心,R为半径邻域的纹理特征T描述:接下来将求解该特征描述的直方图。将人脸图像设为,将其分解成不同的若干个区域 ,则该图像的直方图定义如下:其中 表示从图像划分的区域 中属于第i个 bin 的个数,n 为LBP的统计模式特征
19、个数,D为图像划分的区域的个数。图 4-1人脸经统一模式 LBP 编码图LBP直方图描述的整体统计纹理信息,可以用直方图去分别统计每个局部区域或重要特征区域的直方图信息,然后利用原先人脸图像的位置信息,拼接各个直方图信息,最后描述整幅人脸图像的纹理信息。整个分块uniform模式的LBP的空间增强直方图算法的效果如图 4-1 所示。人脸图像经uniform模式的LBP的空间增强直方图编码后人脸的眼镜、眉毛、鼻子、嘴巴等特征比较明显,而其他地方则大部分信息被滤除。3.2.3 PCA特征降维假设此时共有n幅样本人脸图片参与特征提取工作,将图像的LBP模式直方图看做一向量,并把所有合并为一矩阵H,那
20、么H就是Dn的矩阵。现在就是要采用 PCA 算法对Dn的矩阵H进行降维,降维后的矩阵称之为,使得的矩阵规模远小于矩阵H的规模。令,其中 称之为投影变换矩阵。根据PCA降维理论,求解投影变换矩阵W需要以下步骤(样本从D维降到d维):步骤1:计算散布矩阵S步骤 2:计算散布矩阵S的本征值和本征向量步骤 3:按本征值的大小,从大到小对其对应的本征向量进行排序。步骤 4:选择其中最大的d个本征值对应的本征向量,并将其作为投影向量,构成Dd投影矩阵W。经过上面的四个步骤LBP提取的特征矩阵H的D维向量,降维d维的特征矩阵为,其中dD。图(1)原始人脸 图(2)经分块 uniform 模式 LBP 的空
21、图(3)PCA 特征 间增强直方图算法提取后的特征图像图 4-2 基于 PCA 降维和分块 LBP 特征提取人脸效果图实验结果如上图所示,图(1)是原始人脸图像,图(2)是采用分块 uniform 模式的 LBP图像的空间增强直方图算法就行特征提取的人脸图像,图(3)是经过 PCA 降维的特征图像。可以看出经过 PCA 降维的人脸的眼、鼻和嘴等重要部位特征依然被保留在图像中,而图像中的总体的信息量已明显减少,说明经 PCA 降维的特征提取取得了良好的效果。3.2.4 SVM 分类识别模块由PCA特征降维可知,人脸图像特征矩阵H的D维向量,降维d维的特征矩阵为。对于特征矩阵的 n 类样本分类求解
22、问题,可以把这n类分类划分为多个两类分类问题,每类分类问题可以构建一个最小支持向量机,那么对于 n 类分类问题需要构建N=n(n-1)/2个最小支持向量机。在构造任意两类样本的最小支持向量机分类器时如p 和q类,可以选取将属于第p类的训练样本数据标记记为+1,将属于第q类的训练样本数据标记为-1,这样就可以训练出这两类样本数据的最小支持向量机用于人脸分类。当人脸待测样本经过N=n(n-1)/2个这样的两类最小支持向量机分类之后,便可确定其所属人脸样本库的最终类别,即达到人脸分类识别的目的。四、实验结果及分析为了从整体角度去考察上述人脸识别算法所实现的人脸识别的性能和准确率,依次完成人脸特征库的
23、建立、特征训练和特征分类识别,输出识别结果和统计结果(通常包括每幅人脸图片识别的结果、识别用时等)。本文还将是否采用 PCA 算法进行降维,进行了对比测试。此处我们选用ORL人脸库提供的4010幅图片,分别从这40个人的人脸库中选出6张作为训练人脸样本,剩下的4张作为待识别人脸样本,如下图 4-1 所示。图 4-1 人脸样本图采用如上方法对该算法进行测试,并对测试的结果进行统计,结果如下表 4-2 所示。表 4-2 人脸识别系统的性能测试结果从表 4-2 可以看到该智能人脸识别算法的平均识别速度大概在 0.332s 左右,识别率为93.13%。1)如果不采用 PCA 算法进行降维,由于此时人脸特征信息
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2026学年内江市威远县数学三上期末联考模拟试题含解析
- 2025-2026学年江西省九江市评估三年级数学第一学期期末监测模拟试题含解析
- 2024年云南省德宏傣族景颇族自治州瑞丽市数学三年级第一学期期末教学质量检测模拟试题含解析
- 2024年怒江傈僳族自治州维西傈僳族自治县三上数学期末学业质量监测模拟试题含解析
- 2024年江苏省镇江市扬中市三上数学期末学业质量监测模拟试题含解析
- 七年级政治第六课做情绪的主人第一框丰富多彩的情绪人教版课件
- 有效识别主管护师考试误区试题及答案
- 2025年执业护士考试灵活应对试题及答案
- 2025年主管护师考试各科总结试题及答案
- 南北地区护理差异试题及答案
- GB/T 5744-2023船用气动快关阀
- 基于蓝牙的无线温湿度监测系统的设计与制作
- 烟花爆竹行业事故应急救援处置培训
- 申请浇地农业灌溉电申请书
- 汽车货物运单模板
- 260吨汽车吊地基承载力验算
- 高中语文第4单元家乡文化生活4.3参与家乡文化建设课时作业部编版必修上册
- 火力发电厂与变电所设计防火规范
- Unit4+Extended+reading-+The+Value+of+Science高中英语牛津译林版2020必修第三册
- 小学思政课《爱国主义教育》
- 09《马克思主义政治经济学概论(第二版)》第九章
评论
0/150
提交评论