图像复原论文DOC_第1页
图像复原论文DOC_第2页
图像复原论文DOC_第3页
图像复原论文DOC_第4页
图像复原论文DOC_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、信息工程学院数字图像处理图像复原的应用 姓 名: 学 号: 提交日期: 2012年5月28日 目录1、 摘要.3二、关键词.3三、图像复原的研究背景和现状.4四、原理与实验结果分析 .6五、 几种较经典的复原方法介绍.8(1)维纳滤波法.8(2)正则滤波法.10 (3)Lucy-Richardson算法.11(4)盲去卷积.12六、 结论.13七、参考文献.14 摘要 运动模糊图像的复原是图像复原中较常见也是较难的一类,在智能交通系统中有着广泛的应用。本文面向车牌识别应用,对运动模糊图像的复原技术进行了系统的研究与实现。 匀速直线运动模糊图像复原的关键在于运动模糊方向和长度的自动鉴别两个 方面

2、。将原图像视为各向同性的一阶马尔科夫过程,通过用双线性插值来进行方向微分,实现了运动模糊方向的自动鉴别算法;根据分析模糊图像的频谱图出现黑色条带的原因、条件以及它的精确位置,实现了运动模糊长度自动鉴别算法。 针对复杂成像情况下的运动模糊图像复原工作,着重解决了含噪运动模糊图像和局部运动模糊图像的复原问题;综合应用椒盐噪声检测器和基于带可变正则化参数的径向基神经网络(I也FN)方法,实现了组合滤波器去噪算法,采用改进的局部运动模糊对象提取算法实现局部运动模糊图像的复原。 开发了车牌模糊图像复原系统。该系统对模糊长度和模糊角度均具有较高的鉴别精度,对于含有噪声的运动模糊图像和局部模糊图像进行相应的

3、去噪处理和对局部模糊对象进行提取,并提供参数调整机制以获得最佳的复原效果。自动实现各种类型的运动模糊车牌图像的清晰恢复,复原的效果图可直接应用于后续的车牌识别等工作。 关键字 图像复原,运动模糊,模糊方向,模糊长度,噪声,局部模糊,车牌识别 三、图像复原的研究背景和现状图像复原是数字图像处理中的一个重要课题。它的主要目的是改善给定的图像质量并尽可能恢复原图像。图像在形成、传输和记录过程中,受多种因素的影响,图像的质量都会有不同程度的下降,典型的表现有图像模糊、失真、有噪声等,这一质量下降的过程称为图像的退化。图像复原的目的就是尽可能恢复被退化图像的本来面目。在成像系统中,引起图像退化的原因很多

4、。例如,成像系统的散焦,成像设备与物体的相对运动,成像器材的固有缺陷以及外部干扰等。成像目标物体的运动,在摄像后所形成的运动模糊。当人们拍摄照片时,由于手持照相机的抖动,结果像片上的景物是一个模糊的图像。由于成像系统的光散射而导致图像的模糊。又如传感器特性的非线性,光学系统的像差,以致在成像后与原来景物发生了不一致的现象,称为畸变。再加上多种环境因素,在成像后造成噪声干扰。人类的视觉系统对于噪声的敏感程度要高于听觉系统,在声音传播中的噪声虽然降低了质量,但时常是感觉不到的。但景物图像的噪声即使很小都很容易被敏锐的视觉系统所感知。图像复原的过程就是为了还原图像的本来面目,即由退化了的图像 恢复到

5、能够真实反映景物的图像。 与图像增强相似,图像复原的目的也是改善图像的质量。图像复原可以看作图像退化的逆过程,是将图像退化的过程加以估计,建立退化的数学模型后,补偿退化过程造成的失真,以便获得未经干扰退化的原始图像或图像的最优估计值,从而改善图像质量。图像复原是建立在退化的数学模型基础上的,且图像复原是寻求在一定优化准则下的原始图像的最优估计,因此,不同的优化准则会获得不同的图像复原,图像复原结果的好坏通常是按照一个规定的客观准则来评价的,如:最小均方准则,加权均方准则等。因而,图像恢复可以理解为图像降质过程的反向过程。建立图像恢复的反向过程的数学模型和确定导致图像退化的点扩散函数,就是图像复

6、原的主要任务。 早期的复原方法有:非邻域滤波法,最近邻域滤波法以及效果较好的维纳滤波和最小二乘滤波等。随着数字信号处理和图像处理的发展,新的复原算法不断出现,在应用中可以根据具体情况加以选择。 目前国内外图像复原技术的研究和应用主要集中于诸如空间探索、天文观测、物质研究、遥感遥测、军事科学、生物科学、医学影象、交通监控、刑事侦察等领域。如生物方面,主要是用于生物活体细胞内部组织的三维再现和重构,通过复原荧光显微镜所采集的细胞内部逐层切片图,来重现细胞内部构成;医学方面,如对肿瘤周围组织进行显微观察,以获取肿瘤安全切缘与癌肿原发部位之间关系的定量数据;天文方面,如采用迭代盲反卷积进行气动光学效应

7、图像复原研究等。四、原理与实验结果分析 图像退化模型图像复原问题的有效性关键之一取决于描述图像退化过程模型的精确性。要建立图像的退化模型,则首先必须了解、分析图像退化的机理并用数学模型表现出来。在实际的图像处理过程中,图像均需以数字离散函数表示,所以必须将退化模型离散化3。对于退化图像: (1) 如果上式中,按相同间隔采样,产生相应的阵列、,然后将这些阵列补零增广得到大小为的周期延拓阵列,为了避免重叠误差,这里,。由此,当k=0,1,L,M-1;l=0,1,L,N-1时,即可得到二维离散退化模型形式: (2)如果用矩阵表示上式,则可写为: (3)其中,,为一个行堆叠形成的列向量,H为阶的块循环

8、矩阵。现实中造成图像降质的种类很多,常见的图像退化模型及点扩展函数有如下情景15:(1) 线性移动降质在拍照时,成像系统与目标之间有相对直线移动会造成图像的降质。水平方向线性移动可以用以下降质函数来描述: (4) 式中,d是降质函数的长度。在应用中如果线性移动降质函数不在水平方向,则可类似地定义移动降质函数。(2) 散焦降质当镜头散焦时,光学系统造成的图像降质相应的点扩展函数是一个均匀分布的圆形光斑。此时,降质函数可表示为: (5)式中,R是散焦半径。(3) 高斯(Gauss)降质Gauss降质函数是许多光学测量系统和成像系统最常见的降质函数。对于这些系统,决定系统点扩展函数的因素比较多。众多

9、因素综合的结果总是使点扩展函数趋于Gauss型。典型的系统可以举出光学相机和CCD摄像机、相机、CT相机、成像雷达、显微光学系统等。Gauss降质函数可以表达为: (6)式中,K是归一化常数,是一个正常数,C是的圆形支持域。 五、几种较经典的复原方法介绍图像复原算法有线性和非线性两类。线性算法通过对图像进行逆滤波来实现反卷积,这类方法方便快捷,无需循环或迭代,直接可以得到反卷积结果,然而,它有一些局限性,比如无法保证图像的非负性。而非线性方法通过连续的迭代过程不断提高复原质量,直到满足预先设定的终止条件,结果往往令人满意。但是迭代程序导致计算量很大,图像复原时耗较长,有时甚至需要几个小时。所以

10、实际应用中还需要对两种处理方法综合考虑,进行选择4。(1) 维纳滤波法维纳滤波法是由Wiener首先提出的,应用于一维信号处理,取得了很好的效果。之后,维纳滤波法被用于二维信号处理,也取得了不错的效果,尤其在图像复原领域,由于维纳滤波计算量小,复原效果好,从而得到了广泛的应用和发展。维纳滤波器寻找一个使统计误差函数 (7)最小的估计。E是期望值操作符,是未退化的图像。该表达式在频域可表示为 (8)其中, 表示退化函数 表示的复共轭表示噪声的功率谱表示未退化图像的功率谱比率称为信噪功率比。在IPT中维纳滤波使用函数deconvwnr来实现的。 模拟实验结果如下:图1(2) 正则滤波法另一个容易实

11、现线性复原的方法称为约束的最小二乘方滤波,在IPT中称为正则滤波,并且通过函数deconvreg来实现。在最小二乘复原处理中,常常需要附加某种约束条件。例如令Q为f的线性算子,那么最小二乘方复原的问题可以看成使形式为的函数,服从约束条件的最小化问题,这种有附加条件的极值问题可以用拉格朗日乘数法来处理。寻找一个,使下述准则函数为最小: (9)式中叫拉格朗日系数。通过指定不同的Q,可以得到不同的复原目标。模拟实验结果如下:图2(3)Lucy-Richardson算法L-R算法是一种迭代非线性复原算法,它是从最大似然公式印出来的,图像用泊松分布加以模型化的。当下面这个迭代收敛时模型的最大似然函数就可

12、以得到一个令人满意的方程: (10)*代表卷积,代表未退化图像的估计,g和h和以前定义一样。在IPT中,L-R算法由名为deconvlucy的函数完成的。模拟实验结果如下:图3(4)盲去卷积在图像复原过程中,最困难的问题之一是,如何获得PSF的恰当估计。那些不以PSF为基础的图像复原方法统称为盲区卷积。它以MLE为基础的,即一种用被随机噪声所干扰的量进行估计的最优化策略。工具箱通过函数deconvblind来执行盲区卷积。模拟实验结果如下:图像分别迭代5次,10次,20次的结果。图4六、结论 本文在对图像复原做了简单介绍,以及图像复原的前景与现状做了简单的介绍以后,提出了图像退化的一些基本模型,并提出了一些经典的图像复原方法,并测试了个方法,进行图像复原,得到了较好的效果。进一步工作中,需要提高清晰函数的可信度以及减少图像噪声对清晰度函数的影响,并在现实环境中进行试验验证。七、参考文献1 罗军辉冯平等。MATLAB7.0在图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论