版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、直线与圆的方程练习题1圆的方程是(x1)(x+2)+(y2)(y+4)=0,则圆心的坐标是( )A、(1,1) B、(,1) C、(1,2) D、(,1)2过点A(1,1)与B(1,1)且圆心在直线x+y2=0上的圆的方程为( )A(x3)2+(y+1)2=4 B(x1)2+(y1)2=4 C(x+3)2+(y1)2=4 D(x+1)2+(y+1)2=43方程表示的图形是( )A、以(a,b)为圆心的圆 B、点(a,b) C、(a,b)为圆心的圆 D、点(a,b)4两圆x2+y24x+6y=0和x2+y26x=0的连心线方程为( )Ax+y+3=0 B2xy5=0 C3xy9=0 D4x3y+
2、7=05方程表示圆的充要条件是( )A B CD6圆x2y2xy0的半径是()A1 B C2 D27圆O1:x2y22x0与圆O2:x2y24y0的位置关系是()A外离 B相交C外切 D内切8圆x22xy24y30上到直线xy10的距离为的点共有()A4 B3 C2 D1 9设直线过点(a,0),其斜率为1,且与圆x2y22相切,则a的值为()A± B±2C±2 D±410当a为任意实数时,直线(a1)xya10恒过定点C,则以C为圆心,为半径的圆的方程为()Ax2y22x4y0 Bx2y22x4y0 Cx2y22x4y0 Dx2y22x4y011设P是
3、圆(x3)2(y1)24上的动点,Q是直线x3上的动点,则|PQ|的最小值为()A6 B4 C3 D212已知三点A(1,0),B(0,),C(2,),则ABC外接圆的圆心到原点的距离为()A BC D13.过点(3,1)作圆(x1)2y21的两条切线,切点分别为A,B,则直线AB的方程为()A2xy30 B2xy30 C4xy30 D4xy3014圆的周长是( )ABC D15若直线ax+by+c=0在第一、二、四象限,则有( )A、ac>0,bc>0B、ac>0,bc<0 C、ac<0,bc>0D、ac<0,bc<016点()在圆x+y2y4
4、=0的内部,则的取值范围是( )A1<<1B 0<<1 C1<< D<<117点P(5a+1,12a)在圆(x1)2+y2=1的内部,则a的取值范围是( )A.a1 B.a C.a D.a18求经过点A(1,4)、B(3,2)且圆心在y轴上的圆的方程19已知一圆经过点A(2,3)和B(2,5),且圆心C在直线l:上,求此圆的标准方程20已知圆C:及直线.(1)证明:不论取什么实数,直线与圆C恒相交;(2)求直线与圆C所截得的弦长的最短长度及此时直线的方程21如果实数x、y满足x+y-4x+1=0,求的最大值与最小值。22ABC的三个顶点分别为A(
5、1,5),(2,2),(5,5),求其外接圆方程参考答案1D【解析】方程化为;则圆的标准方程是所以圆心坐标为故选D2B【解析】试题分析:设圆的标准方程为(x-a)2+(y-b)2=r2,根据已知条件可得(1-a)2+(1b)2=r2,(1a)2+(1b)2=r2,a+b-2=0,联立,解得a=1,b=1,r=2所以所求圆的标准方程为(x1)2+(y1)2=4故选B。另外,数形结合,圆心在线段AB的中垂线上,且圆心在直线x+y2=0上,所以圆心是两线的交点,在第一象限,故选B。考点:本题主要考查圆的标准方程点评:待定系数法求圆的标准方程是常用方法。事实上,利用数形结合法,结合选项解答更简洁。3D
6、【解析】由知故选D4C【解析】试题分析:两圆x2+y24x+6y=0和x2+y26x=0的圆心分别为(2,3),(3,0),所以连心线方程为3xy9=0,选C.考点:本题主要考查圆与圆的位置关系、圆的性质。点评:数形结合,由圆心坐标确定连心线方程。5B【解析】试题分析:圆的一般方程要求中。即,解得,故选B。考点:本题主要考查圆的一般方程。点评:圆的一般方程要求中。6A【解析】考查直线斜率和倾斜角的关系。7A 【解析】试题分析:半径为,所以周长为,故选A。考点:本题主要考查圆的一般方程与标准方程的转化。点评:简单题,明确半径,计算周长。8D【解析】直线斜率为负数,纵截距为正数,选D9D【解析】试
7、题分析:因为点()在圆x+y2y4=0的内部,所以将点()的坐标代入圆的方程左边应小于0,即,解得<<1,故选D。考点:本题主要考查点与圆的位置关系。点评:点在圆的内部、外部,最终转化成解不等式问题。10D 【解析】点P在圆(x1)2+y2=1内部(5a+11)2+(12a)21a.114【解析】方程x+y+Dx+Ey+F=0配方得根据条件得:解得12,【解析】线段的中点为,线段的中点为,线段的中点为,三角形各边上中线所在的直线方程分别是,即,13见解析【解析】试题分析:证明一:由A,B两点确定的直线方程为:即:把C(5,7)代入方程的左边:左边右边C点坐标满足方程C在直线AB上A
8、,B,C三点共线证明二:A,B,C三点共线.考点:本题主要考查直线方程、斜率公式、两点间距离公式的应用。点评:多种方法证明三点共线,一题多解的典型例题。14(1)2x+3y-1=0 (2)2x-y+5=0(3)4x+y-6=0或3x+2y-7=0(4)或.【解析】略15圆的方程为x2y28x8y120【解析】解:由题意可设圆的方程为x2y2DxEyF0 (D2E24F0)圆过点A(2,0)、B(6,0)、C(0,2)圆的方程为x2y28x8y12016所求圆的方程为x2+(y1)2=10【解析】设圆的方程为x2+(yb)2=r2圆经过A、B两点, 解得所以所求圆的方程为x2+(y1)2=101
9、7【解析】试题分析:解:因为A(2,3),B(2,5),所以线段AB的中点D的坐标为(0,4),又 ,所以线段AB的垂直平分线的方程是联立方程组,解得所以,圆心坐标为C(1,2),半径,所以,此圆的标准方程是考点:本题主要考查圆的方程求法。点评:求圆的方程,常用待定系数法,根据条件设出标准方程或一般方程。有时利用几何特征,解答更为简便。18(1)见解析;(2)【解析】试题分析:(1)直线方程,可以改写为,所以直线必经过直线的交点.由方程组解得即两直线的交点为A 又因为点与圆心的距离,所以该点在内,故不论取什么实数,直线与圆C恒相交.(2)连接,过作的垂线,此时的直线与圆相交于、.为直线被圆所截
10、得的最短弦长.此时,.即最短弦长为.又直线的斜率,所以直线的斜率为2.此时直线方程为: 考点:本题主要考查直线与圆的位置关系、直线方程。点评:研究直线与圆的位置关系,可根据条件灵活选用“代数法”或几何法。19的最大值为。同理可得最小值为-【解析】解:设=k,得y=kx,所以k为过原点的直线的斜率。又x+y-4x+1=0表示以(2,0)为圆心,半径为的圆,所以当直线y=kx与已知圆相切且切点在第一象限时,k最大。此时,|CP|=,|OC|=2,RtPOC中,。所以的最大值为。同理可得最小值为-。20【解析】试题分析:解法一:设所求圆的方程是因为A(4,1),B(6,3),C(3,0)都在圆上,所以它们的坐标都满足方程,于是 可解得所以ABC的外接圆的方程是解法二:因为ABC外接圆的圆心既在AB的垂直平分线上,也在BC的垂直平分线上,所以先求AB、BC的垂直平分线方程,求得的交点坐标就是圆心坐标,线段AB的中点为(5,1),线段BC的中点为,AB的垂直平分线方程为,BC的垂直平分线方程解由联立的方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国家管网集团湖南公司2026届秋季高校毕业生招聘笔试模拟试题(浓缩500题)带答案详解(精练)
- 2025国网辽宁省高校毕业生提前批招聘(约450人)笔试模拟试题浓缩500题及答案详解(考点梳理)
- 国家管网集团山东分公司2026届秋季高校毕业生招聘考试备考题库(浓缩500题)附答案详解(综合卷)
- 2025国网江西省高校毕业生提前批招聘(约450人)笔试模拟试题浓缩500题附答案详解(典型题)
- 2026国网上海市电力公司高校毕业生提前批招聘笔试模拟试题浓缩500题含答案详解(模拟题)
- 2026秋季国家管网集团广西公司高校毕业生招聘笔试备考题库(浓缩500题)附参考答案详解ab卷
- 2026秋季国家管网集团建设项目管理公司高校毕业生招聘考试参考试题(浓缩500题)带答案详解(培优a卷)
- 2026国网吉林省电力校园招聘(提前批)笔试模拟试题浓缩500题附答案详解
- 2026年六盘水市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(预热题)
- 国家管网集团2026届高校毕业生招聘考试参考试题(浓缩500题)含答案详解(培优)
- DZ/T 0220-2006泥石流灾害防治工程勘查规范
- 先天性膈疝多学科联合治疗模式
- 事业单位工作人员调动申报表
- 《审计实务》第6讲 函证程序(下)
- 眼科病例的护理文书记录学习
- 旧楼监控改造方案
- 培智五年级上次数学期末考试题
- 牛津译林版一年级上册英语第4单元第一课时课件
- 大班歌曲《小树叶》
- 大学英语四级词汇表带音标
- 脑室腹腔分流手术
评论
0/150
提交评论