回归分析教学案例_第1页
回归分析教学案例_第2页
回归分析教学案例_第3页
回归分析教学案例_第4页
回归分析教学案例_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、回归分析教学案例山东省青州实验中学 262500聂公民王垒适用人民教育出版 教学选修2-3 第三章统计案例 回归分析教学教学目标 1、知识与技能(1)学生通过收集现实问题中两个变量的数据,会画出散点图,分析数据,认为判断两个变量的关系。(2)能求出回归系数,确定回归方程,并根据回归方程作出数据预测。(3)了解非线性回归问题,能找出解决一般问题的思路。(4)通过相关检验,了解回归分析的思想与方法,例如用表格收集数据,画散点图分析数据等。2、过程与方法(1)通过复习线性回归方程,探究相关性检验的基本方法与思想。(2)通过收集数据,分析数据,培养学生类比、迁移、化归的能力,合情推理推理的能力,解决问

2、题的能力。3、情感态度与价值观培养学生合作探究、积极参与、大胆探索的精神,增强学生的数据分析意识。教学重点与难点重点:回归分析的思想与方法难点:回归分析的应用教学方法:学生自主实践探究为主,教师指导为辅,形成完整的知识结构。师生共同将知识深入探究,为增强直观性,采用多媒体辅助教学,注重计算机、计算机在数据分析中的应用,注意计算机、计算器的操作指导。预备活动教师准备A预备活动纸(见附件1),B课上活动纸(见附件2),C课后活动纸(见附件3),提前一天分发给学生,学生利用课余时间提前完成。设计意图:帮助学生回顾复习必修3相关内容,为学习新知识作好准备。并提出启发性问题,便于引入课题。教学过程:一、

3、复习引入学生回答“预备活动纸”。教师总结由活动纸上问题“比较三组数据的相关性显著程度”引出相关检验,进入课题。设计意图:为新知识讲授作铺垫。二、举例精解教师分发课上活动纸。例1(1)研究某灌溉渠道的水流速度 y m/s与水深x m之间的关系,测得数据如下:表格 1水深x(m)1.401.501.601.701.801.902.002.10流速y(m/s)1.701.791.881.952.032.102.162.21预测当水深为1.50m时水流速度为多少? (2)为了解某地母亲身亲x与女儿身高y的相关关系,随机测得10对母女的身高数据如下:表格 2母亲身高x(cm)15916016016315

4、9154159158159157女儿身高y(cm)158159160161161155162157162156母亲身高为161cm,预测女儿身高为多少?课件展示。师生共同用软件Excel 画出散点图,并求出回归直线方程和相关系数等,作出预测。引导问题:从这两例画出的散点图我们发现数据的成性相关性显著程度有何不同?设计意图:使学生了解Excel在数据分析中的应用,引出课题。师生共同归纳总结出:(1)中数据的线性相关关系比(2)中数据更为显著。在数据分析中用相关系数表示这特征。教师展示相关系数r,说明:;越接近1,线性相关系越强;越近0线性相关程度越弱。0.95两个变量有很显著的线性相关关系0.9

5、00.95两个变量有显著的线性相关关系0.750.90两个变量有较显著的线性相关关系教师展示例1(2)建立回归模型的方法及步骤,归结如下(课件展示):(1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量。(2)画出解释变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系)。(3)由经验确定回归方程的类型(如我们观察数据呈线性关系,则选用线性回归方程 y = a + b x).(4)按一定规则估计回归方程中参数(如最小二乘法)。(5)得出结果后分析残差图是否有异常(个别数据残差过大,或残差呈现不随机规律性,等),若存在异常,则检查数据是否有误,或模型是否合适等。按上述步骤教师

6、示范。教师指导学生Excel的使用方法,使用说明见附件4。画散点图图表 1回归方程:y = 0.7815x + 34.996用Excel数据分析工具得到的数据:表格 3SUMMARY OUTPUT回归统计Multiple R0.714798R Square0.510936Adjusted R Square0.449803标准误差1.865065观测值10表格 4方差分析dfSSMSFSignificance F回归分析129.0722729.072278.3577830.020169残差827.827733.478466总计956.9表格 5Coefficients标准误差t StatP-va

7、lueLower 95%Upper 95%下限 95.0%上限 95.0%Intercept34.995842.932080.8151430.438582-64.0058133.9973-64.0058133.9973X Variable 10.7815130.2703282.8909830.0201690.1581361.4048890.1581361.404889表格 6RESIDUAL OUTPUT观测值预测 Y残差1159.256-1.25632160.038-1.03783160.038-0.03784162.382-1.38245159.2561.74376155.349-0.34

8、877159.2562.74378158.475-1.47489159.2562.743710157.693-1.6933画残差图残差图(如图表2)中各点在水平带状区域分布不均匀,而且R 2 = 0.5109,r = 0.714798,故此线性回归方程不是很合适。所以这个模型需改进。改进方法:可以去掉残差为正值的两组数据再作分析。图表 2改进后的Excel回归分析结果图表 3设计意图:教师通过示范让学生体验解题过程与方法,了解回归分析的思想及作用。培养学生分析数据的能力与意识。教师课件展示练习:1、某市居民1996-2003年货币由入x与购买商品的支出y的统计数据如下:表格 7年份199619

9、97199819992000200120022003货币收入3637384042444750购买支出30.031.032.033.234.836.539.041.6货币收入为50,预测购买商品的支出量是多少?设计意图:通过练习让学生体验解决问题的过程与方法,形成技能。教师课件展示例题 例2 某种书每本的成本费y元与印刷册数x千册有关,统计了如下数据:表格 8x123410203050100200y10.155.424.082.852.111.621.411.31.211.15这种书印刷55千册,预计每本书成本费是多少?这种书印刷250千册,预计每本书成本费是多少?引导问题1:给散点图加趋势线,

10、趋势线大约是何种形状?引导问题2:能画出与y的散点图吗?有何特点?引导问题3:你能检验一下与y的线性相关关系吗?引导问题4:求出y与的回归方程,作出预测。学生根据问题完成回归分析。设计意图:引导学生自己解决问题,培养学生的思维。三、归纳小结教师学生回答,教师归纳,作如下总结1、回归分析的思想方法2、回归分析的应用设计意图:师生共同总结,加深学生对回归分析思想的认识。知道学习回归分析的意义。四、作业设计层次烟雾环境死亡指数研究(1)画出表格9中数据的散点图(2)列出回归直线方程,作出回归分析(3)完成表格10(4)确定这个回归直线方程是否符合回归检验的要求。(画出残差图说明)(5)是否需改变变量

11、回归直线方程以期更适合数据特征。表格 9表格 10(6)在数据统计上,预测吸烟指数平均水平(吸烟指数为100)时的死亡率。这个预测值与实际值比较有意义吗?(7)你能给出不吸烟者(吸烟指数为0)的死亡率吗?这预测出了什么问题?层次球自由落体后回弹高度试验表格 11表格 12是否有线性相关关系?_回归直线方程_相关系数_是正相关还是负相关?_相关显著程度如何?_预测球从140cm下落时的回弹高度_预测球从250cm下落时的回弹高度_上面的哪个预测值更可信?并作出恰当说明。_球从什么高度自由下落可以回弹90cm?_回顾一下你是如何解决上面这些问题的。_设计意图:通过分层次作业满足不同学生的需求,使学

12、生全面发展。层次是试验探究性质的作业,可培养学生的数学应用意识,认识到数学是探究自然世界的有力工具。附件1 预备活动1、XY253748.56127167.517.5818XY162134.5374.54.5596.51.5上面两组数据是否具有线性相关关系?3、分析下面数据回答问题。跳高掷铁饼跳远年份74.81418.5282.8751900711546.52891904751610294.251908761780299.25191276.51759.25281.51920781817.125293.125192476.3751863304.75192877.6251948.875300.75

13、193279.93751987.375371.31251936782078308194880.322166.85298195283.252218.5308.251956852330319.75196085.752401.5317.75196488.252550.5350.5196887.752535324.5197288.52657.4328.5197692.752624336.25198092.52622336.251984数据信息来自 单位:英寸A. 跳远 1、预测1944年的记录2、预测2040年的记录B跳高1、预测1916年的记录2、预测1940年的记录3、预测1944年的记录C掷铁饼

14、1、预测1916年的记录2、预测1940年的记录 D比较以上数据年份与记录相关程度。附件2课上活动例1(1)研究某灌溉渠道的水流速度 y m/s与水深x m之间的关系,测得数据如下:表格 13水深x(m)1.401.501.601.701.801.902.002.10流速y(m/s)1.701.791.881.952.032.102.162.21预测当水深为1.50m时水流速度为多少? 画散点图回归方程:_用Excel数据分析进行分析画残差图残差图特点:_相关系数r =_相关系数的性质:_改进:_(2)为了解某地母亲身高x与女儿身高y的相关关系,随机测得10对母女的身高数据如下:表格 14母亲

15、身高x(cm)159160160163159154159158159157女儿身高y(cm)158159160161161155162157162156母亲身高为161cm,预测女儿身高为多少?画散点图回归方程:_用Excel数据分析进行分析画残差图残差图特点:_相关系数r =_相关系数的性质:_改进:_例2 某种书每本的成本费y元与印刷册数x千册有关,统计了如下数据:表格 15x123410203050100200y10.155.424.082.852.111.621.411.31.211.15这种书印刷55千册,预计每本书成本费是多少?这种书印刷250千册,预计每本书成本费是多少?引导问题

16、1:给散点图加趋势线,趋势线大约是何种形状?引导问题2:能画出与y的散点图吗?有何特点?引导问题3:你能检验一下与y的线性相关关系吗?引导问题4:求出y与的回归方程,作出预测。附件3 课后活动层次烟雾环境死亡指数研究表格 16 表格 17 (1)画出表格9中数据的散点图(2)列出回归直线方程,作出回归分析_(3)完成表格10(4)确定这个回归直线方程是否符合回归检验的要求。(画出残差图说明)_(5)是否需改变变量回归直线方程以期更适合数据特征。_(6)在数据统计上,预测吸烟指数平均水平(吸烟指数为100)时,的死亡率。这个预测值与实际值比较有意义吗?_(7)你能给出不吸烟者(吸烟指数为0)的死

17、亡率吗?这预测出了什么问题?_层次球自由落体后回弹高度试验表格 18表格 19是否有线性相关关系?_回归直线方程_相关系数_是正相关还是负相关?_相关显著程度如何?_预测球从140cm下落时的回弹高度_预测球从250cm下落时的回弹高度_上面的哪个预测值更可信?并作出恰当说明。_球从什么高度自由下落可以回弹90cm?_回顾一下你是如何解决上面这些问题的。_附件4 Excel的使用说明加载数据分析工具1、 从菜单中选择“工具 / 加载宏”,如图1。可能需要你的 MS Office 安装盘。2、 选定“分析工具”单击确,此时可能需要插入 MS Office 安装盘,还可能需要计算机管理员身份验证。

18、以完安装。图 1输入要分析的数据1、 这一步须熟练地往表格输入数据。我们用A列表示自变量,B列表示因变量。2、 如图2,所示是一个输入数据的例子。图 2用Excel 画散点图、从菜单中选择“插入 / 图表”。、在图表向导步骤中选择“XY散点图”,选择子图表类型中的无连线的类型。如图点击“下一步”进入步骤2,在这一步中需要确定数据的范围。、从左上角按下鼠标左键拖动至右下角,放开鼠标。这时所选数据区域被闪烁的虚线框围绕。同时图标向导自动填充了这个范围(如图 )。、单击“下一步”进入步骤,在这一步中可以完成以下工作:输入图表的标题、坐标轴的标题,添加必要的网格线,设置图例的位置等。、单击“下一步”进

19、入步骤4,在这一步中选择图表置于何处。图 3图 4图 5添加平均值1、右击图表出现图中的菜单,选择“源数据”。弹出对话框如图8。2、单击“添加”出现“系列2”,在右边给系列2添加数据。注意格式。3、如图7平均值的坐标把散点图分成四部分。这对我们分析数据有用吗?图 6图 7图 8添加回归直线,绘制残差图图 9图 10用Excel中的统计函数求回归直线和相关系数以下是所用的函数说明:1、Pearson相关系数系数2、,r的标准误差,自由度。用数据分析工具实现数据分析结果方差分析dfSSMSFSignificance F回归分析129.0722689129.07238.357780.020169残差

20、827.827731093.47847总计956.9Coefficients标准误差t StatP-valueIntercept34.9957983242.932078190.815140.43858X Variable 10.7815126050.2703276252.890980.02017RESIDUAL OUTPUT观测值预测 Y残差标准残差1159.2563025-1.256302521-0.71452160.0378151-1.037815126-0.59023160.0378151-0.037815126-0.02154162.3823529-1.382352941-0.78615159.25630251.7436974790.991646155.3487395-0.348739496-0.19837159.25630252.7436974791.560348158.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论