


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、三、数列的极限观察数列当时的变化趋势. 问题: 当无限增大时, 是否无限接近于某一确定的数值?如果是, 如何确定?通过上面演示实验的观察:当无限增大时, 无限接近于1. 问题: “无限接近”意味着什么?如何用数学语言刻划它. 给定 由 只要时, 有给定只要时, 有给定只要时, 有给定只要时, 有成立. 定义 如果对于任意给定的正数(不论它多么小), 总存在正整数, 使得对于时的一切, 不等式都成立, 那末就称常数是数列的极限, 或者称数列收敛于, 记为 或如果数列没有极限, 就说数列是发散的. 注意:定义 使时, 恒有其中记号每一个或任给的; 至少有一个或存在. 数列收敛的几何解释:当时, 所
2、有的点都落在内, 只有有限个(至多只有个)落在其外. 注意:数列极限的定义未给出求极限的方法. 例1 证明证 注意到 .任给 若要 只要或 所以, 取 则当时, 就有.即 重要说明:(1)为了保证正整数N,常常对任给的给出限制; (2)逻辑“取 则当时, 就有”的详细推理见下,以后不再重复说明或解释,对函数极限同样处理逻辑推理. 由于,所以当时一定成立,即得成立. 严格写法应该是:任给 不妨取, 若要=e ,只要 所以, 取 则当时, 由于,所以当时一定成立,即得成立. 也就是成立=.即小结: 用定义证数列极限存在时, 关键是任意给定寻找N, 但不必要求最小的N. 例3证明, 其中. 证 任给
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中华传统木雕工艺师认证考试模拟题库
- 2025年中国农业科技发展高峰论坛专家讲座要点预测题
- 拉晶清装工安全知识培训课件
- 拉力试验培训课件
- 护士肝病科普知识培训课件
- 抢车安全知识培训内容课件
- 2025年环氧丙烷项目发展计划
- 2025年计算机数字信号处理板卡项目发展计划
- 2024-2025学年湖南省常德市石门县九年级(上)期末数学试卷(含答案)
- 2025年煤制合成氨项目建议书
- 行政执法常识考试题库及答案
- 钢结构隔断施工方案(3篇)
- 2025年IT技术支持工程师招聘面试技巧与模拟题答案
- 浙江省A9协作体暑假返校联考物理试题及答案
- 2025年部编版新教材语文小学一年级上册教学计划(含进度表)
- 2025年度机动车检验检测机构授权签字人考试题及答案
- 2025年上海全民国防教育知识竞赛题库及答案
- 2025广西公需科目真题续集(附答案)
- T/CECS 10214-2022钢面镁质复合风管
- 学校“1530”安全教育记录表(2024年秋季全学期)
- 公路工程标准施工招标文件(2018年版)
评论
0/150
提交评论