




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学建模论文加权向量组合安排最佳组队方案摘要:在一年一度的数学建模竞赛活动中,都会有很多院校组织学生参加数学建模竞赛,比赛规则就是3个人组成一个队,但是每个学校都会有同样的问题,那就是在挑选出来的参赛团队中如何安排组队才能使队伍实力最强,以及整个团队实力最强,即追求一种整体实力最大化,这是参赛之前每个院校必须做好的工作,组队原则是队员各方面能力能互补。根据某院校20名参赛预选队员,学校决定从20名队员中选出18名队员参加数学建模竞赛。根据对20名队员各项(7项)衡量指标判定学生的综合素质,我们通过定义7项指标的权重得到一个正互反阵, 采用层次分析法,进行分析,并且检验是否通过一致性检验,即 则
2、通过一致性检验,那么就可以知道每一个学生的综合成绩,通过筛选把最差的两个学生排除,就得到安排人数及名单,经检验在问题一中各项指标分层分析都通过一致性检验,运用MATLAB进行计算输出结果。在问题二中采用一随机三个人进行组合,进行随机组队,然后采用对每一个队组成的 的一个矩阵这样的矩阵通过MATLAB计算有816个,那么就有816种组合方式,在矩阵中每一行表示学生的姓名,列表示学生的各项指标,为了让三个对员能够形成互补,我们采用调用函数 方法进行搜索每一列最大值,构成一个新的数组,代表该队的各项能力水平,这样依次取出就得到816个队的各项指标的成绩,再与问题一里面的权重向量 相乘,就得到一个 的
3、一个总体综合实力的矩阵,再通过排序筛选出最大的一个值,找到与之对应的组合队员,那么就可以确定该队实力最强。问题三采用随机排序然后每隔3个数归为一个整体代表每一个,一共有六个,通过增加其随机次数来确定它的稳定值。关键词:层次分析,随机数循环,加权向量,MATLAB,一致性检验一问题重述:问题一:对于问题一的得要求要在20个队员中选出最好的18个人参加比赛,通过筛选把最后的两个同学进行排就可以确定参赛队员名单。问题二:对于问题二,根据题目要求通过对全局组合进行筛选,这里运用问题一里面的数据,通过层次分析出来的权向量,以及筛选出来的18个队员名单进行排列组合的所有可能性做一个全局计算,得到每种可能组
4、队的一个总体评价分数指标,然后筛选出最大的一个分数,就可以知道该队的人员组合安排。问题三:对于问题三,根据题目要求筛选出来的18名队员组成的六个队需要进行一个科学合理的搭配使得总体水平效果最好,要解决的问题是具体安排每一个队由哪些人员组成,需要解决的是队员组成的队伍里面队员能够进行相互各方面的缺陷,这样才能使总体效果最好。二模型假设:1. 假设竞赛水平的发挥只取决于表中所给的各项条件;2. 参赛队员都能正常发挥自己的水平;3.假设7个指标的影响度是逐渐降低的4.假设随机组组队,每个队员在该组都能弥补其他两人的不足5.假设每队的综合能力只是取决于他们的7项指标三符号说明:一致性指标;:一致性比率
5、;:随机一致性指标;:7个指标的权重:每个队员的综合得分:每名队员依据各个指标所占权重所得分数:每个方案总分:一个方案下每个队的竞技水平:表示组队的名称四模型建立与求解:问题一:该问题是一个综合排序问题。对于此类问题,可通过层次分析法知道不同评价指标所占权重,然后根据权重进行整体评估与排序。 在本题中,依据层次分析法,目标层为选择队员;准则层为学科成绩、智力水平、动手能力、写作能力、外语能力、协作能力、其它特长;方案层为A、B、C、D、E、F、G、H、I、J、K、L、M、N、O、P、Q、R、S、T这20个待选队员(如图1)。假设7个评价指标所占权重是依次递减的,分别为1,2,3,4,5,6,7
6、。通过两两比较建立成对比较阵(如图2),然后进行一致性检验,若检验通过,则计算出目标层与准则层之间权重。针对准则层与方案层,若用层次分析法,需建立7个的矩阵,人为工作量过大;且心理学家认为,成对比较因素不宜超过9个,而此时的成对比较因素有20个,因此准则层与方案层之间的权重计算不用层次分析法,而通过Excel直接依据各个指标所占权重计算每个人的得分,再将每个人的7个指标得分求和得出每个队员的综合得分,并对总得分降序排列排除最后两名队员。图1:选拔优秀队员学科成绩写作能力动手能力智力水平其他能力协作能力外语水平ADTCB目标层准则层C:方案层计算每名队员综合得分的方法如下:(1)在matlab中
7、输入正互反矩阵(图2),调用编写好的层次分析法计算权重方程xxjj0,得出、,判断一致性;(2)得出7个指标所占权重;(3)通过Excel计算每名队员依据各个指标所占权重所得分数;(4)每个队员各个指标的求和,得出每个队员的综合分数;(5)个队员的综合分数进行排序,选出前18位;输入正互反矩阵(图2)矩阵2:得出,当正互反阵为7阶时,对应的得到结果:且,所以通过一致性检验,可用产生的权重 7个指标权重分别为:队员编号学科成绩智力水平动手能力写作能力外语水平协作能力其它特长A8.698.287.99.56B8.28.88.16.57.79.12C88.68.58.59.29.68D8.68.98
8、.39.69.79.78E8.88.48.57.78.69.29F9.29.28.27.9996G9.29.697.29.19.29H789.86.28.79.76I7.78.28.46.59.69.35J8.38.18.66.98.59.44K98.287.899.55L9.69.18.19.98.79.76M9.59.68.38.199.37N8.68.38.28.1995O9.18.78.88.48.89.45P9.38.48.68.88.69.56Q8.489.49.28.49.17R8.78.39.29.18.79.28S7.78.19.67.699.69T98.89.57.97.7
9、96对求和,得出每个队员的综合分数如下表:队员ABCDEEGHIJKLMNOPQRST综合分数8.483067.965858.428698.833748.553998.785229.044947.806767.923378.084068.423569.105369.06878.346258.750068.780818.534148.726268.301468.73683对每个队员的综合分数排序:队员编号LMGDFPO综合分数9.105369.06879.044948.833748.785228.780818.75006排名1234567队员编号TREQACK综合分数8.736838.72626
10、8.553998.534148.483068.428698.42356排名891011121314队员编号NSJBIH综合分数8.346258.301468.084067.965857.923377.80676排名151617181920由上表排序知,队员H、I综合得分较低,因此淘汰。所选择的18名队员名单分别为:A、B、C、D、E、F、G、J、K、L、M、N、O、P、Q、R、S、T。问题二:考虑到3名队员之间能力的互补性,需选出3名队员,他们每个人在7项评价指标中最高分予以保留生成新的最高分。将新生成的7项最高分按第一问的权重相加,得出最高综合分。这3名队员的综合最高分越高,则这只队伍的能力
11、越强。对于每一项评价指标,三人进行比较,将3人中的最高值予以保留,得到由三人成绩共同组成的新的一组指标。将新得出的一组指标分别乘以第一组得出的权重,让后对一组中的7项指标求和,其积记为这一组的总分数。求出所有组合情况下每组的总分数,并选出所有总分数中的最大值。找出最大值所对应的组合情况,即为最佳3人组队。经过程序运行计算,得出总分最大值为9.5178,此时为第622种组合情况,对应的队员名单为:G、S、L。程序请看在附录-第二问问题三:要求18名队员组成6个队, 并且整体竞赛技术水平最高, 同时给出每个队的竞赛技术水平。通过matlab随机产生18个元素的一行18列矩阵,随机分成六组作为一个分
12、组方案,编程类似问题二,最后通过总分t衡量,量化看一个方案的优秀程度。经过大数量的循环得到最优方案(1)一次循环即为一个方案,随机分出6个组,记为列出每个组的分数矩阵,例如随机组合一个组如下(2)每个组各项的水平应该由其三个队员各项能力中最高的数组决定,所以用函数得出能代表每组各项水平,结果如下: (3)将每组通过用函数得到的行向量乘以每项能力的权重得到,即为衡量每组综合能力的数值。例如 将向量六项元素求和得,用值来衡量该方案的优秀程度解得结果如下:当前最优的六种组合组别第一组第二组第三组队员21071291314183水平9.3949.3949.0659组别第四组第五组第六组队员155114
13、1781616水平9.35359.29079.0896上面为筛选后的十八名队员排序编号分别为,所以对应上表得到组队方案:第一队 第二队 第三队 第四队 第五队 第六队五模型的误差分析在第一问中,本文采用了层次分析法。依题意较主观的对7项评价指标进行了重要度的评测。从不同的角度、不同侧重点对7项评价指标的重要度进行评测,其评测结果存在差异,这将导致7项评价指标所占权重存在差异。在第三问中,由于全局搜索计算量过大,本文通过多次产生随机组合的方法求18名队员总体的最佳竞赛水平。由于随机生成的组合方法不同,18名队员的分组情况会有差异,18名队员整体竞赛水平也会有差异,但误差可控制在0.01之内。六模
14、型评价本文针对第一问,采用了层次分析法,能够较科学的得出7项评价指标指标所占权重。但又未完全采用层次分析法,避免了由于成对比较因素过多而造成值不准确,保证了所求每个队员综合得分的准确性与科学性。本文对18名队员所有组合情况进行了全局搜索,对于最佳组合能力衡量较全面,所选的3名队员能力具有互补性。而对于每种组合情况,具有科学的量化标准。本程序能够精确的选出所需的3名队员,并给出综合得分。本文对于18个队员组成6队的人员分组,进行了随机生成,大大减少了计算机的工作量,同时所得结论亦科学合理。 模型的不足受题目本身的影响,有些误差无法避免,重要系数得到的正反矩阵是人为定义的误差无法避免。七模型推广此模型在对待评价对象进行全面而综合的科学评价,多个选择对象进行筛选,任务分配,组队等问题中有着广泛的应用,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 毕业班班主任工作总结模版
- 区块链技术企业创新发展的新引擎
- 医院网络环境下的数据传输与隐私保护
- 2025年高中教学终个人工作总结模版
- 医疗器械评估中的伦理考量
- 常见皮肤科诊治
- 医疗人文关怀在呼吸系统疾病治疗中的应用
- 医疗大数据的伦理问题与隐私保护实践
- 医疗地产区块链技术的数据共享应用探索
- 保安与小区合同范例
- 2025届高三语文4月名校联考作文汇编(审题+立意+范文)
- 宠物托运自负协议书范本
- GB/T 5453-2025纺织品织物透气性的测定
- 骨干教师法试题及答案
- 国企人事专员笔试试题及答案
- 2025年甘肃兰州建设投资(控股)集团有限公司招聘笔试参考题库附带答案详解
- 多维视角下潍坊市网络舆情事件的政府应对策略探究
- 公路改扩建工程地质灾害危险性评估报告
- 儿童故事绘本愚公移山课件模板
- IIT临床研究培训
- 污水处理厂设备运行的管理及维护措施
评论
0/150
提交评论