


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Matlab软件包与 Logistic回归在回归分析中,因变量y可能有两种情形:(1) y是一个定量的变量,这时就用通常的regress函数对y进行回归;(2) y是一个定性的变量,比如,y0或1,这时就不能用通常的regress函数对y进行回归,而是使用所谓的Logistic 回归。Logistic回归的基本思想是,不是直接对 y进行回归,而是先定义一种概率 函数,令Pr Y 1| Xi Xi,X2 X2, , Xn Xn要求01。此时,如果直接对 进行回归,得到的回归方程可能不满足这个条件。在现实生活中,一般有01。直接求 的表达式,是比较困难的一件事,于是,人们改为考虑1 y 1的概率k
2、y 1的概率一般的,0 k。人们经过研究发现,令1Pr Y 1|X1 X1,X2 X2, ,Xn XnbTX1一bTX;1 a ea 0, bj 0即, 是一个Logistic型的函数,效果比较理想。于是,我们将其变形得到:1logb° “为bnxn然后,对log进行通常的线性回归。例如,Logistic型概率函数11 300e 2x的图形如下:ezplot('W(1+300*exp(-2*x)',0,10)例1 企业到金融商业机构贷款,金融商业机构需要对企业进行评估。例如,Moody 公司就是 New York 的一家专门评估企业的贷款信誉的公司。设:0,企业2年后
3、破产y1,企业2年后具备还款能力面列出美国 66 家企业的具体情况:YX1X2X30-62.8-89.51.703.3-3.51.10-120.8-103.22.50-18.1-28.81.10-3.8-50.60.90-61.2-56.21.70-20.3-17.41.00-194.5-25.80.5020.8-4.31.00-106.1-22.91.50-39.4-35.71.20-164.1-17.71.30-308.9-65.80.807.2-22.62.00-118.3-34.21.50-185.9-280.06.70-34.6-19.43.40-27.96.31.30-48.26.
4、81.60-49.2-17.20.30-19.2-36.70.80-18.1-6.50.90-98.0-20.81.70-129.0-14.21.30-4.0-15.82.10-8.7-36.32.80-59.2-12.82.10-13.1-17.60.90-38.01.61.20-57.90.70.80-8.8-9.10.90-64.7-4.00.10-11.44.80.9143.016.41.3147.016.01.91-3.34.02.7135.020.81.9146.712.60.9120.812.52.4133.023.61.5126.110.42.1168.613.81.6137.
5、333.43.5159.023.15.5149.623.81.9112.57.01.8137.334.11.5135.34.20.9149.525.12.6118.113.54.0131.415.71.9121.5-14.41.018.55.81.5140.65.81.8134.626.41.8119.926.72.3117.412.61.3154.714.61.7153.520.61.1135.926.42.0139.430.51.9153.17.11.9139.813.81.2159.57.02.0116.320.41.0121.7-7.81.6其中X1未分配利润Y支付利息前的利润总资产X
6、2总资产X3销售额总资产建立破产特征变量y的回归方程。解:在这个破产问题中,1 y 1的次数y 1的次数我们讨论log,概率 0,1。设 二企业2年后具备还款能力的概率, 即,=企业不破产的概率。因为值0.5,令66个数据有33个为0, 33个为1,所以,取分界0, 0.5y1, 0.5由于我 们并 不知 道企 业在 没 有破产前 概率 的 具体 值, 也不可能通过X1,X2,X3 的数据把这个具体的概率值算出来,于是,为了方便做回归运算,我们取区间的中值, y 0对应 0.25; y 1,对应0.75 。数据表变为:X1X2X30.25-62.8-89.51.70.253.3-3.51.10
7、.25-120.8-103.22.50.25-18.1-28.81.10.25-3.8-50.60.90.25-61.2-56.21.70.25-20.3-17.41.00.25-194.5-25.80.50.2520.8-4.31.00.25-106.1-22.91.50.25-39.4-35.71.20.25-164.1-17.71.30.25-308.9-65.80.80.257.2-22.62.00.25-118.3-34.21.50.25-185.9-280.06.70.25-34.6-19.43.40.25-27.96.31.30.25-48.26.81.60.25-49.2-17
8、.20.30.25-19.2-36.70.80.25-18.1-6.50.90.25-98.0-20.81.70.25-129.0-14.21.30.25-4.0-15.82.10.25-8.7-36.32.80.25-59.2-12.82.10.25-13.1-17.60.90.25-38.01.61.20.25-57.90.70.80.25-8.8-9.10.90.25-64.7-4.00.10.25-11.44.80.90.7543.016.41.30.7547.016.01.90.75-3.34.02.70.7535.020.81.90.7546.712.60.90.7520.812.
9、52.40.7533.023.61.50.7526.110.42.10.7568.613.81.60.7537.333.43.50.7559.023.15.50.7549.623.81.90.7512.57.01.80.7537.334.11.50.7535.34.20.90.7549.525.12.60.7518.113.54.00.7531.415.71.90.7521.5-14.41.00.758.55.81.50.7540.65.81.80.7534.626.41.80.7519.926.72.30.7517.412.61.30.7554.714.61.70.7553.520.61.1
10、0.7535.926.42.00.7539.430.51.90.7553.17.11.90.7539.813.81.20.7559.57.02.00.7516.320.41.00.7521.7-7.81.6于是,在Matlab软件包中编程如下,对log -进行通常的线性回归:X=1,-62.8,-89.5,1.7;1,3.3,-3.5,1.1;1,-120.8,-103.2,2.5;1,-18.1,-28.8,1.1;1,-3.8,-50.6,0.9;1,-61.2,-56.2,1.7;1,-20.3,-17.4,1;1,-194.5,-25.8,0.5;1,20.8,43,1;1,-106.
11、1,-22.9,1.5;1,-39.4,-35.7,1.2;1,-164.1,-17.7,1.3;1,-308.9,-65.8,0.8;1,7.2,-22.6,2.0;1,-118.3,-34.2,1.5;1,-185.9,-280,6.7;1,-34.6,-19.4,3.4;1,-27.9,6.3,1.3;1,-48.2,6.8,1.6;1,-49.2,-17.2,0.3;1,-19.2,-36.7,0.8;1,-18.1,-6.5,0.9;1,-98,-20.8,1.7;1,-129,-14.2,1.3;1,-4,-15.8,2.1;1,-8.7,-36.3,2.8;1,-59.2,-12
12、.8,2.1;1,-13.1,-17.6,0.9;1,-38,1.6,1.2;1,-57.9,0.7,0.8;1,-8.8,-9.1,0.9;1,-64.7,-4,0.1;1,-11.4,4.8,0.9;1,43,16.4,1.3;1,47,16,1.9;1,-3.3,4,2.7;1,35,20.8,1.9;1,46.7,12.6,0.9;1,20.8,12.5,2.4;1,33,23.6,1.5;1,26.1,10.4,2.1;1,68.6,13.8,1.6;1,37.3,33.4,3.5;1,59,23.1,5.5;1,49.6,23.8,1.9;1,12.5,7,1.8;1,37.3,3
13、4.1,1.5;1,35.3,4.2,0.9;1,49.5,25.1,2.6;1,18.1,13.5,4;1,31.4,15.7,1.9;1,21.5,-14.4,1;1,8.5,5.8,1.5;1,40.6,5.8,1.8;1,34.6,26.4,1.8;1,19.9,26.7,2.3;1,17.4,12.6,1.3;1,54.7,14.6,1.7;1,53.5,20.6,1.1;1,35.9,26.4,2;1,39.4,30.5,1.9;1,53.1,7.1,1.9;1,39.8,13.8,1.2;1,59.5,7,2;1,16.3,20.4,1;1,21.7,-7.8,1.6; a0=0
14、.25*ones(33,1);a1=0.75*ones(33,1); y0=a0;a1;Y=log(1-y0)./y0);b,bint,r,rint,stats =regress(Y,X) rcoplot(r,rint)执行后得到结果: b =0.3914-0.0069-0.0093-0.3263bint =0.0073 0.7755-0.0105 -0.0032-0.0156 -0.0030-0.5253 -0.1273r =-0.00371.0561-0.26830.67330.50280.31790.7320-0.70441.13610.25530.4955-0.1593-1.76431
15、.19840.0662-0.99371.39830.99880.96210.30720.49420.81610.39570.11411.21761.22250.86700.74680.85310.57770.85560.25880.9675 -0.6179 -0.3984 -0.5943 -0.4360 -0.7585 -0.4476 -0.5541 -0.5288 -0.36870.21940.9248 -0.3078 -0.7516 -0.4266 -0.9150 -0.06800.0653 -0.5082 -1.1506 -0.8882 -0.5701 -0.4191 -0.3540 -
16、0.8289 -0.4239 -0.57201.42452.51131.16082.13491.92771.78562.19710.66092.57911.71541.96401.2441-0.62232.64661.5249-0.26572.80182.45852.41521.76491.94392.27991.85621.55212.66922.66132.32502.20732.31782.04212.31561.71202.42640.85041.07600.8671-0.3449-0.3153-0.4396-0.6967-0.3640-0.8616-0.8919 rint =-1.4
17、320-0.3990-1.6975-0.7882-0.9222-1.1498-0.7332-2.0696-0.3070-1.2048-0.9730-1.5626-2.9063-0.2499-1.3925-1.7217-0.0051-0.4609-0.4909-1.1505-0.9556-0.6477-1.0648-1.3238-0.2340-0.2162-0.5911-0.7136-0.6117-0.8868-0.6044-1.1944-0.4914-2.0862-1.8729-2.0558-1.91081.0389-2.21250.6955-1.91861.0234-2.02710.9190
18、-2.00340.9459-1.83401.0967-1.19511.6340-0.31862.1681-1.78191.1662-2.22380.7205-1.89811.0449-2.36430.5342-1.53191.3959-1.33781.4683-1.98340.9669-2.58500.2839-2.35560.5793-2.04220.9020-1.89291.0547-1.81951.1116-2.29610.6383-1.89551.0476-2.03550.8916-1.81781.1280-1.78761.1571-1.91051.0313-2.16200.7686-
19、1.83351.1055-2.32370.6005-2.35440.5707s =0.569927.38410.00000.5526R2值二0.5699 (说明回归方程刻画原问题不是太好),F_检验值=0.05相关的p值=说明变量x1, x2, x3之间存在线性相关关系。回归方程为:即,得到:27.3841>0.0000 (这个值比较好),与显著性概率0.5526>0.05 ,log110.3914 0.0069% 0.0093x2 0.3263x31 e'0.3914 0.0069x., 0.0093x2 0.3263x3以及残差图:Fee JlmJ士r =lEt1D3D
20、3D<160CaE> Mdrrwr通过残差图看出,残差连续的出现在0的上方,或者连续地出现在0的下方, 也暗示变量Xi,X2,X3之间存在线性相关。编程计算它们的相关系数:X=1,-62.8,-89.5,1.7;1,3.3,-3.5,1.1;1,-120.8,-103.2,2.5;1,-18.1,-28.8,1.1;1,-3.8,-50.6,0.9;1,-61.2,-56.2,1.7;1,-20.3,-17.4,1;1,-194.5,-25.8,0.5;1,20.8,43,1;1,-106.1,-22.9,1.5;1,-39.4,-35.7,1.2;1,-164.1,-17.7,1
21、.3;1,-308.9,-65.8,0.8;1,7.2,-22.6,2.0;1,-118.3,-34.2,1.5;1,-185.9,-280,6.7;1,-34.6,-19.4,3.4;1,-27.9,6.3,1.3;1,-48.2,6.8,1.6;1,-49.2,-17.2,0.3;1,-19.2,-36.7,0.8;1,-18.1,-6.5,0.9;1,-98,-20.8,1.7;1,-129,-14.2,1.3;1,-4,-15.8,2.1;1,-8.7,-36.3,2.8;1,-59.2,-12.8,2.1;1,-13.1,-17.6,0.9;1,-38,1.6,1.2;1,-57.9
22、,0.7,0.8;1,-8.8,-9.1,0.9;1,-64.7,-4,0.1;1,-11.4,4.8,0.9;1,43,16.4,1.3;1,47,16,1.9;1,-3.3,4,2.7;1,35,20.8,1.9;1,46.7,12.6,0.9;1,20.8,12.5,2.4;1,33,23.6,1.5;1,26.1,10.4,2.1;1,68.6,13.8,1.6;1,37.3,33.4,3.5;1,59,23.1,5.5;1,49.6,23.8,1.9;1,12.5,7,1.8;1,37.3,34.1,1.5;1,35.3,4.2,0.9;1,49.5,25.1,2.6;1,18.1,
23、13.5,4;1,31.4,15.7,1.9;1,21.5,-14.4,1;1,8.5,5.8,1.5;1,40.6,5.8,1.8;1,34.6,26.4,1.8;1,19.9,26.7,2.3;1,17.4,12.6,1.3;1,54.7,14.6,1.7;1,53.5,20.6,1.1;1,35.9,26.4,2;1,39.4,30.5,1.9;1,53.1,7.1,1.9;1,39.8,13.8,1.2;1,59.5,7,2;1,16.3,20.4,1;1,21.7,-7.8,1.6;X1=X(:,2);X2=X(:,3);X3=X(:,4);corrcoef(X1,X2)corrco
24、ef(X1,X3)corrcoef(X2,X3) 执行后得到结果: ans =1.0000 0.64090.64091.0000ans =1.00000.0467ans =1.0000-0.35010.04671.0000-0.35011.0000可见corrcoef(X1,X2) = 0.64,这说明,在做回归时,可以去掉捲列,或者去掉x列。根据经济意义,我们去掉x1 列,再进行回归X=1,-62.8,-89.5,1.7;1,3.3,-3.5,1.1;1,-120.8,-103.2,2.5;1,-18.1,-28.8,1.1;1,-3.8,-50.6,0.9;1,-61.2,-56.2,1.
25、7;1,-20.3,-17.4,1;1,-194.5,-25.8,0.5;1,20.8,-4.3,1;1,-106.1,-22.9,1.5;1,-39.4,-35.7,1.2;1,-164.1,-17.7,1.3;1,-308.9,-65.8,0.8;1,7.2,-22.6,2.0;1,-118.3,-34.2,1.5;1,-185.9,-280,6.7;1,-34.6,-19.4,3.4;1,-27.9,6.3,1.3;1,-48.2,6.8,1.6;1,-49.2,-17.2,0.3;1,-19.2,-36.7,0.8;1,-18.1,-6.5,0.9;1,-98,-20.8,1.7;1,
26、-129,-14.2,1.3;1,-4,-15.8,2.1;1,-8.7,-36.3,2.8;1,-59.2,-12.8,2.1;1,-13.1,-17.6,0.9;1,-38,1.6,1.2;1,-57.9,0.7,0.8;1,-8.8,-9.1,0.9;1,-64.7,-4,0.1;1,-11.4,4.8,0.9;1,43,16.4,1.3;1,47,16,1.9;1,-3.3,4,2.7;1,35,20.8,1.9;1,46.7,12.6,0.9;1,20.8,12.5,2.4;1,33,23.6,1.5;1,26.1,10.4,2.1;1,68.6,13.8,1.6;1,37.3,33
27、.4,3.5;1,59,23.1,5.5;1,49.6,23.8,1.9;1,12.5,7,1.8;1,37.3,34.1,1.5;1,35.3,4.2,0.9;1,49.5,25.1,2.6;1,18.1,13.5,4;1,31.4,15.7,1.9;1,21.5,-14.4,1;1,8.5,5.8,1.5;1,40.6,5.8,1.8;1,34.6,26.4,1.8;1,19.9,26.7,2.3;1,17.4,12.6,1.3;1,54.7,14.6,1.7;1,53.5,20.6,1.1;1,35.9,26.4,2;1,39.4,30.5,1.9;1,53.1,7.1,1.9;1,39
28、.8,13.8,1.2;1,59.5,7,2;1,16.3,20.4,1;1,21.7,-7.8,1.6; a0=0.25*ones(33,1);a1=0.75*ones(33,1); y0=a0;a1;Y=log(1-y0)./y0);X1=X(:,2);X2=X(:,3);X3=X(:,4);E=ones(66,1); B=E,X2,X3;b,bint,r,rint,stats =regress(Y,B) rcoplot(r,rint) 执行后得到: b =0.6594-0.0177-0.4676bint =1.0516-0.0127-0.26490.2672-0.0226-0.6702r
29、 =-0.34780.8917-0.21590.4445-0.03430.24080.59920.21700.83080.73580.36930.7342-0.34970.97490.5361-1.37691.68611.15841.30750.27550.16460.74510.86650.79611.14191.10681.19490.54891.02860.82560.69920.41530.9449-0.8603-0.5868-0.4249-0.5020-1.1145-0.4149-0.6395-0.5923-0.76600.46881.2219-0.4490-0.7927-0.454
30、0-1.2630-0.09870.3509-0.5921-1.5450-0.9541-0.8139-0.4498-0.2107-0.9275-0.7051-0.8796-0.3563-0.3306-0.7441-0.9530-0.6992-0.9299-1.1478rint =-1.9280 1.2325-0.7220 2.5054-1.7877 1.3560-1.1746 2.0636-1.6382 1.5696-1.3743 1.8558-1.0189 2.2173-1.3898 1.8237-0.7833 2.4449-0.8845 2.3561-1.2496 1.9882-0.8853
31、 2.3537-1.9330 1.2335-0.6385 2.5883-1.0852 2.1574 -2.1813 -0.5724 0.1435 3.2286 -0.4463 2.7631 -0.2909 2.9059 -1.3275 1.8785 -1.4460 1.7752 -0.8695 2.3597 -0.7514 2.4843 -0.8222 2.4144 -0.4645 2.7482 -0.4883 2.7020 -0.4091 2.7988 -1.0680 2.1659 -0.5813 2.6384 -0.7851 2.4364 -0.9163 2.3146 -1.1827 2.
32、0132 -0.6638 2.5535 -2.4750 0.7543 -2.2082 1.0345 -2.0392 1.1894 -2.1230 1.1190 -2.7155 0.4865 -2.0332 1.2034 -2.2586 0.9795 -2.2133 1.0287 -2.3850 0.8531 -1.0894 2.0270 -0.1453 2.5892 -2.0695 1.1715 -2.4121 0.8268 -2.0716 1.1637 -2.8575 0.3315 -1.7076 1.5102 -1.1978 1.8995 -2.2135 1.0292 -3.1230 0.
33、0331 -2.5686 0.6603 -2.4329 0.8052 -2.0699 1.1704 -1.8258 1.4044 -2.5407 0.6858 -2.3254 0.9152 -2.4908 0.7316-1.97551.2629-1.94901.2879-2.36440.8761-2.56430.6582-2.31980.9215-2.53830.6785-2.75540.4598stats =0.4716 28.11750.00000.6681以及残差图:工OT-/I1JCE10303CJOacase Nurmei3:irf; nini cnnft"們 pin3 S
34、残差图仍然显示变量之间的相关性, 这说明,最开始调查数据时,3个指标没有 选好。最后得到:log 1-0.6594 0.0177x2 0.4676x3212,0.6594 0.0177x2 0.4676x31 e将企业的具体数据X2,X3代入的表达式计算,再结合0,0.51,0.5金融机构就可以知道,是否应该贷款给这家企业 注:一个通常的Regress回归,可以用R2, R2 ,F test等参数评价回归结果的好坏,但对Logistic回归来说,不存在这样简单而令人满意的评价参数,所以,一般应该进行回归诊断。Logistic回归的诊断所谓的Logistic回归诊断,就是将Xi的原始数据代入求得
35、的回归方程中,计算y值,看看有多少个由回归方程计算所得的 y值与原始的y值不同,因而判断 回归方程的好坏。1(1)用回归方程 10.3914 0.0069为 0.0093x2 0.3263x3 进行诊断。1 e在Matlab软件包中,编程诊断X=1,-62.8,-89.5,1.7;1,3.3,-3.5,1.1;1,-120.8,-103.2,2.5;1,-18.1,-28.8,1.1;1,-3.8,-50.6,0.9;1,-61.2,-56.2,1.7;1,-20.3,-17.4,1;1,-194.5,-25.8,0.5;1,20.8,43,1;1,-106.1,-22.9,1.5;1,-39
36、.4,-35.7,1.2;1,-164.1,-17.7,1.3;1,-308.9,-65.8,0.8;1,7.2,-22.6,2.0;1,-118.3,-34.2,1.5;1,-185.9,-280,6.7;1,-34.6,-19.4,3.4;1,-27.9,6.3,1.3;1,-48.2,6.8,1.6;1,-49.2,-17.2,0.3;1,-19.2,-36.7,0.8;1,-18.1,-6.5,0.9;1,-98,-20.8,1.7;1,-129,-14.2,1.3;1,-4,-15.8,2.1;1,-8.7,-36.3,2.8;1,-59.2,-12.8,2.1;1,-13.1,-1
37、7.6,0.9;1,-38,1.6,1.2;1,-57.9,0.7,0.8;1,-8.8,-9.1,0.9;1,-64.7,-4,0.1;1,-11.4,4.8,0.9;1,43,16.4,1.3;1,47,16,1.9;1,-3.3,4,2.7;1,35,20.8,1.9;1,46.7,12.6,0.9;1,20.8,12.5,2.4;1,33,23.6,1.5;1,26.1,10.4,2.1;1,68.6,13.8,1.6;1,37.3,33.4,3.5;1,59,23.1,5.5;1,49.6,23.8,1.9;1,12.5,7,1.8;1,37.3,34.1,1.5;1,35.3,4.
38、2,0.9;1,49.5,25.1,2.6;1,18.1,13.5,4;1,31.4,15.7,1.9;1,21.5,-14.4,1;1,8.5,5.8,1.5;1,40.6,5.8,1.8;1,34.6,26.4,1.8;1,19.9,26.7,2.3;1,17.4,12.6,1.3;1,54.7,14.6,1.7;1,53.5,20.6,1.1;1,35.9,26.4,2;1,39.4,30.5,1.9;1,53.1,7.1,1.9;1,39.8,13.8,1.2;1,59.5,7,2;1,16.3,20.4,1;1,21.7,-7.8,1.6;for j=1:66;f=1/(1+exp(
39、0.3914-0.0069*X(j,2)-0.0093*X(j,3)-0.3263*X(j,4);if f<=0.5;jy=0else jy=1 endendj,在Mathematica软件包中编程如下:62.8,3.3,120.8,18.1,3.8,61.2,20.3,194.5,20.8,106.1,39.4,164.1,308.9,7.2,118.3,185.9,34.6,27.9,48.2,49.2,19.2,18.1,98,129,4,8.7,59.2,13.1,38,57.9,8.8,64.7,11.4,43, 47,3.3,35,46.7,20.8,33, 26.1,68.
40、6,37.3,59, 49.6,12.5,37.3,35.3,49.5,18.1,31.4,21.5,8.5,40.6,34.6,19.9,17.4,54.7,53.5,35.9,39.4,53.1,39.8,59.5,16.3,21.7189.5,3.5,103.2,28.8,50.6,56.2,17.4,25.8,4.3,22.9,35.7,17.7,65.8,22.6,34.2,280,19.4,6.3,6.8,17.2,3676.5,20.8,14.2,15.8,36.3,12.8,17.6,1.6,0.7,9.1,1, 4.8,16.4,16, 4, 20.8,12.6,12.5,2
41、3.6,10.4,13.8,33.4,23.1,23.8,7, 34.1,4.2,25.1,13.5,15.7,14.4,5.8,5.8,26.4,26.7,12.6,14.6,20.6,26.4,30.5,7.1,13.8,7,20.4,7.8;1.7,1.1,2.5,1.1,0.9,1.7,1, 0.5,1,1.5,1.2,1.3,0.8,2, 1.5,6.7,3.4,1.3,1.6,0.3,0.8,0.9,1.7,1.3,2.1,2.8,2.1,0.9,1.2,0.8,0.9,0.1,0.9,1.3,1.9,2.7,1.9,0.9,2.4,1.5,2.1,1.6,3.5,5.5,1.9,
42、1.8,1.5,0.9,2.6,4,1.9,1, 1.5,1.8,1.8,2.3,1.3,1.7,1.1,2, 1.9,1.9,f1.2, 2, 1, 1.6 ;11E°.39140.0069 x1j0.0093 x2 j0.3263 x3 j'Iff 0.5,0, 1 ; Print "", j, ",", y,IIII1x1x2x3Doy66执行后得到结果(只列出不相同的):序号y的原始值Logistic回归值序号y的原始值Logistic回归值134235336437538639740841901421043114412451346140147154816491
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国硝酸锰项目商业计划书
- 2025年中国钛靶材项目投资计划书
- 中国作物秸秆肥项目投资计划书
- 中国金属加工液项目商业计划书
- 巴彦淖尔市人民医院内分泌相关基因报告解读考核
- 运城市中医院放射性肠炎护理考核
- 朔州市中医院个体化治疗方案制定考核
- 大同市中医院社区护士岗位胜任力考核
- 廊坊市中医院泌尿系肿瘤的多学科诊疗能力考核
- 中国乳聚丁苯橡胶项目投资计划书
- GB/T 17622-2008带电作业用绝缘手套
- 部编版六年级语文上册-第三单元习作:-让生活更美好课件
- 耳鼻喉头颈外科考试题库及答案
- 感染性心内膜炎内科学第版
- 六年级上册科学课件-3.23《传动的齿轮》 l 粤教版(共25张PPT)
- 播音主持自我介绍范文八篇
- 材料分析测试技术 第2版 周玉 课后答案1-4章.khda
- 喀斯特地貌精讲课件
- 城市文化与节事活动的的策划与管理肖岱柏课件
- 四层电梯plc控制
- 水电站课程设计 40
评论
0/150
提交评论