




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、应用时间序列分析第一次作业P131.2 附录B中的B1,B2分别是北京地区19852000年的月平均气温和降水量数据,其中缺少1989年的数据,B2还缺少1995年1月数据。(1) 用简单方法补齐1989年的数据和B2中1995年1月的数据,给出季节项的周期;(2) 对19902000年的两种数据个给出一种计算趋势项、季节项和随机项的公式;(3) 利用(2)的公式对所述的数据进行时间序列的分解计算,用数据图列出结果;(4) 用(2)中的结果补充1989年的数据解:(1)对于B1:使用分段趋势法有:(将趋势项定为年平均值)趋势项:B1减去趋势项剩下的部分为季节项和随机项。剩下的部分对每月取平均作
2、为季节项,则有:季节项:余下的部分则为随机项:对于B2:同理:(4)对于B1:1989年的数据为当年的趋势项加季节项对于B2:989年的数据为当月的趋势项加季节项1.3 附录B中的B6是19731978年美国在意外事故中的死亡人数。利用至少两种方法对该时间序列进行分解,要求如下:(1) 画出数据图,给出数据的周期T; 数据图如下: 使用R中decompose函数进行时序分解如下: 可以看出趋势项大致为二次曲线,因此可以考虑采用二次曲线来拟合趋势项。(2) 给出趋势项、季节项和随机项的计算公式; 方法一:二次曲线 认为趋势项满足二次线性方程,由最小二乘公式计算出趋势项如图: B6减去趋势项剩下的
3、部分为季节项和随机项。剩下的部分对每月取平均作为季节项,剩下的部分即为随机项。 方法二:回归方法(多元)认为趋势项满足多元线性方程,由最小二乘公式,计算出,再计算得出趋势项、季节项和随机项: (3) 画出趋势项、季节项和随机项的数据图; 方法一: 趋势项: 季节项: 随机项: 方法二: 趋势项、季节项: 随机项:(4) 对1979年的意外死亡人数做出预测。 方法一: 预测:1979年的数据为当月的趋势项加季节项: 预测图: 方法二: 预测:1979年的数据为回归方程结果: 预测图: 程序代码:#B1B1=matrix(c(-4.7,-3.7,-3.6,-2.9,-4.9,-2.3,-1.1,-
4、3.7,-1.6,-0.7,-2.2,-3.8,-3.9,-1.6,-6.4,-1.9,-1.8,0.1,-1.4,-0.6,0.1,1.8,1.6,0.8,2.1,-0.4,1.3,2.4,2.1,-1.5,3.4,6.9,4.1,4.4,7.6,4.4,6.7,8.1,5.6,7.7,6.2,8.7,7.6,4.7,8.0,14.8,15.0,13.5,15.0,13.7,13.9,15.5,14.0,17.3,14.7,14.3,14.5,15.0,14.4,14.6,19.5,21.3,19.9,20.1,19.6,19.9,20.5,21.5,21.0,19.8,21.6,20.0,
5、19.9,19.3,20.4,24.2,25.3,23.3,24.9,24.8,24.1,23.5,25.4,26.8,24.3,25.4,24.6,23.6,25.3,26.7,25.5,25.1,26.6,25.8,25.6,25.9,26.8,25.2,27.7,25.9,25.5,28.2,26.5,28.0,29.6,25.0,24.5,24.8,24.4,25.4,27.1,24.6,25.2,26.5,25.4,23.9,26.6,25.1,25.5,25.7,18.6,19.8,21.0,21.2,20.2,20.4,20.5,21.3,21.1,19.0,20.7,18.6,
6、22.2,20.9,21.8,13.8,11.4,13.7,14.1,15.3,13.8,12.2,13.9,14.1,14.5,12.8,14.0,14.8,12.9,12.6,3.8,3.4,3.9,6.9,6.4,4.6,3.4,3.7,6.4,7.7,4.2,5.4,4.0,5.9,3.0,-3.6,-1.7,-0.3,-0.2,-0.8,-1.8,-0.3,-0.8,-1.4,-0.4,0.9,-1.5,0.1,-0.7,-0.6),ncol=12)B1.mean=apply(B1,2,mean)B1=rbind(B11:4,B1.mean,B15:15,deparse.level
7、=0)B1.trend=apply(B1,1,mean)#trendplot(rep(c(t(B1.trend),rep(12,16),type="l",ylab="trend")B1.temp=B1-B1.trendB1.season=apply(B1.temp,2,mean)B1.season=B1.season-sum(B1.season)/12#seasonalplot(rep(c(t(B1.season),16),type="l",ylab="seasonal")B1.rand=t(t(B1.temp)-
8、B1.season)#randomplot(c(t(B1.rand),type="h",ylab="random")# transform matrix into time series B1=c(t(B1)B1.ts=ts(data=B1,start=1985,frequency=12)plot(B1.ts)# use decompose functionDecom.B1=decompose(B1.ts)plot(Decom.B1)#B2B2=c(1.5,7.5,7.8,13.6,24.5,32.0,289.5,297.7,38.4,3.8,4.6,0
9、.1,0.0,6.0,17.0,1.0,5.0,203.0,163.0,143.0,114.0,4.0,6.0,4.0,4.3,2.4,13.0,41.8,64.6,91.2,130.9,246.5,46.2,4.1,35.4,3.5,0.9,1.3,8.9,8.2,37.4,61.8,278.7,204.0,48.8,22.8,0.0,0.5,4.7,21.6,40.5,59.7,119.6,4.0,223.0,157.0,63.1,0.3,3.6,0.2,0.3,0.8,25.1,17.1,214.6,236.3,198.0,124.7,72.0,12.2,1.0,4.7,0.7,0.0,
10、3.4,10.5,52.8,69.4,153.9,141.4,54.5,38.1,16.7,0.1,3.7,1.5,0.3,16.9,8.6,39.2,206.4,158.5,18.3,9.9,43.4,0.0,0.0,5.0,0.0,1.9,66.0,23.6,459.2,214.2,15.2,10.3,12.7,5.1,NA,1.7,6.6,5.3,45.6,68.9,195.6,119.9,116.3,9.6,0.2,2.8,0.2,0.0,11.0,6.2,1.8,55.1,307.4,250.0,32.9,30.8,2.6,2.9,4.9,0.0,10.6,17.4,41.5,35.
11、5,139.8,83.2,44.1,43.0,2.1,8.8,1.3,26.3,4.3,54.7,61.5,142.9,247.9,114.4,4.7,61.8,11.3,0.6,0.0,0.0,5.2,33.6,32.4,23.8,62.7,63.5,44.5,3.9,9.5,0.7,11.9,0.0,8.8,18.3,37.7,19.0,61.5,150.5,18.4,35.2,9.7,0.1)B2=matrix(B2,ncol=12,byrow=TRUE)#fill the missing valueB2.mean=apply(B2,2,mean,na.rm=TRUE)B2=rbind(
12、B21:4,B2.mean,B25:15,)B2=c(t(B2)B2is.na(B2)=B2.mean1# transform matrix into time series B2.ts=ts(data=B2,start=1985,frequency=12)plot(B2.ts)# use decompose functionDecom.B2=decompose(B2.ts)plot(Decom.B2)# least-squares fittingY=matrix(c(rep(1,192),1:192),ncol=192,byrow=TRUE)Result=solve(Y%*%t(Y)%*%Y
13、%*%B2B2.trend=c(t(Y)%*%Result)#trendplot(B2.trend,type="l",ylab="trend")B2.temp=B2-B2.trendB2.temp=matrix(B2.temp,ncol=12,byrow=TRUE)B2.season=apply(B2.temp,2,mean)B2.season=B2.season-sum(B2.season)/12#seasonalplot(rep(c(t(B2.season),16),type="l",ylab="seasonal&quo
14、t;)B2.rand=t(t(B2.temp)-B2.season)#randomplot(c(t(B2.rand),type="h",ylab="random")#(4)#B1B1.1989=B1.trend5+B1.season#B2B2.1989=B2.trend(4*12+1):(4*12+12)+B2.season#Question 1.3B6=c(9007,8106,8928,9137,10017,10826,11317,10744,9713,9938,9161,8927,7750,6981,8038,8422,8714,9512,10120
15、,9823,8743,9192,8710,8680,8162,7306,8124,7870,9387,9556,10093,9620,8285,8433,8160,8034,7717,7461,7776,7925,8634,8945,10078,9179,8037,8488,7874,8647,7792,6957,7726,8106,8890,9299,10625,9302,8314,8850,8265,8796,7836,6892,7791,8129,9115,9434,10484,9827,9110,9070,8633,9240)B6=matrix(B6,ncol=12,byrow=TRU
16、E)B6.mean=apply(B6,2,mean)B6=c(t(B6)# transform matrix into time series B6.ts=ts(data=B6,start=1973,frequency=12)plot(B6.ts)# use decompose functionDecom.B6=decompose(B6.ts)plot(Decom.B6)# least-squares fitting(quadratic)Y=matrix(c(rep(1,72),1:72,1:72*1:72),ncol=72,byrow=TRUE)Result=solve(Y%*%t(Y)%*
17、%Y%*%B6B6.trend=c(t(Y)%*%Result)#trendplot(B6.trend,type="l",ylab="trend")B6.temp=B6-B6.trendB6.temp=matrix(B6.temp,ncol=12,byrow=TRUE)B6.season=apply(B6.temp,2,mean)B6.season=B6.season-sum(B6.season)/12#seasonalplot(rep(c(t(B6.season),6),type="l",ylab="seasonal&qu
18、ot;)B6.rand=t(t(B6.temp)-B6.season)#randomplot(c(t(B6.rand),type="h",ylab="random")# predict 1979Y.1979=matrix(c(rep(1,12),73:84,73:84*73:84),ncol=12,byrow=TRUE)B6.1979_1=c(t(Y.1979)%*%Result)+B6.seasonplot(1:72,B6,type="l",xlim=c(0,84),main="Prediction",xlab="Time")lines(73:84,B6.1979_1,col="BLUE",lty=3)# least-squ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行政管理与公共关系的资源配置研究题及答案
- 保洁承揽合同范例
- 内墙腻子包工合同范例
- 行政管理与公共关系的比较研究题及答案
- 2025年市政工程考试知识更新与重难点分析及试题及答案
- 2025年经济法概论考试试题及答案
- 农村水工安装合同范例
- 净资产评估合同范例
- 企业采购项目合同范例
- 保安单位劳动合同范例
- 区间估计教学课件
- 五年级下册 教科版 科学 第三单元《让资源再生》课件
- 2024年武汉市第二中西医结合医院武汉六七二医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 耳鼻喉技师模拟试题(附参考答案)
- 废旧再生资源加工利用企业安全生产双体系培训资料
- 2024年河南省中职对口升学高考语文试题真题(解析版)
- 水利专业技术岗位竞聘演讲稿
- 初中数学新课程标准(2024年版)
- UL9540A标准中文版-2019储能系统UL中文版标准
- 编辑或出版岗位招聘面试题与参考回答(某大型央企)2024年
- 主要绿化树种苗木质量(DB14-T 135-2005)
评论
0/150
提交评论