六同第一讲-还原法解题_第1页
六同第一讲-还原法解题_第2页
六同第一讲-还原法解题_第3页
六同第一讲-还原法解题_第4页
六同第一讲-还原法解题_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一讲 复原法解题教学目标:1、初步了解“复原法,加强学生的运算能力 2、掌握“复原法的解题步骤,并运用于解决实际问题 3、培养独立思考、自主探究的能力教学重难点:熟练的应用复原法解容许用题教学方法:讲练法教学用具:讲义教学过程一、 导入 清朝书画家郑板桥在山东潍县当县官时,有一年春天,他提着一壶酒在街上边走边饮,又是吟诗,又是画画,正好遇上老朋友计山,计山说:“光你一个人喝酒,也不说请我喝呀?郑板桥说:“请倒是想请,只是你来晚了,我的酒已经喝完了。计山问道:“你一个人喝了多少酒呀?郑板桥“哈哈一笑,吟出一首诗来:“我有一壶酒,提着街上走,吟诗添一倍,画画喝一斗。三作诗和画,喝光壶中酒。你说我

2、壶中,原有多少酒?计山眨着眼 想了半天,说:“我算出来了,你的壶中原来一共 有7/8斗酒。郑板桥说:“对,你很聪明。同学们,你们知道计山是怎样算出来的吗? 其实,计山在计算的过程中用到了我们今天要学习的方法-复原法。等学完之后,大家肯定会比郑板桥的好朋友更加聪明的。二、 新课学习例1、将一个数扩大7倍后,减去5,再除以5,最后加上最大的一位数,得22。这个数是多少?解析:由我们知道,一个数经过了多步变化后变成了22,顺着推肯定我们没方法解决,那就只能倒着推了-怎么来的怎么回去。这里呢我们采用方框法先把题目中的变化过程表示出来:在上图中,第一个方框表示原来的数,最后一个方框表示多步变化之后的新数

3、。中间的每一个方框表示,每一步变化之后得到的中间结果。我们要求的是第一个方框里面的数,从最后一个方框一步一步往前推即可,要注意的是倒退的时候采用的是逆运算:22-9×5+5÷ 7=13×5+5÷ 7=70÷ 7=10小结:这种数学运算题是用复原法解题的经典类型之一,我们采用了倒推法,即为复原法解题的精髓-从最后结果一步一步倒着推理,回到条件。每一步运算为原来的逆运算,变加为减,变减为加,便乘为除,变除为乘。而且,做这类题目时采用方框法,简单明了。下面大家照着这个思路,计算郑板桥原来有多少酒,看看计山有没有算错。练习:“我有一壶酒,提着街上走,吟

4、诗添一倍,画画喝一斗。三作诗和画,喝光壶中酒。你说我壶中,原有多少酒解析:同样的我们先画方框图 1÷2+1÷2+1÷2=1.5÷2+1÷2=1.75÷2=0.875斗所以,计山算的是正确的。例2、一筐鱼连筐重100千克,先卖出一半的鱼,又卖出剩下鱼的一半,这时连筐还重28千克,原来筐重多少千克?解析:这一例与刚刚的例子稍有区别,虽然都是一半的关系。但是筐子的重量并没有发生变化,只是鱼的重量存在一半的关系。从图中,可以发现原来的鱼最后被分成了4份,我们假设最后剩下的鱼为一份,那么原来的就为4份,一共卖出去3份鱼。而筐子不变,所以我们可以

5、求出没份鱼的重量,然后再计算筐子的重量。100-28÷2×2-1=24千克28-24=4千克例3、贝贝的阿姨给贝贝送来一筐苹果,贝贝将其中的一半分给弟弟,又将剩下的一半分给哥哥,最后将第二次剩下的一半留给爸爸和妈妈,自己拿了剩下的4个苹果。问阿姨一开始送来了多少个苹果?解析:在这一例中都是“一半的关系,我们仍然可以采用方框图法来分析4×2×2×2=32个小结:一半问题是复原法解题中的一大类型,在这两例中,关系比拟简单,大家很容易理解。但很多时候,并不能恰好为一半,比方说“一半多几个“一半少几个对于这样的问题,我们怎么解决呢?下面看例3过渡:学习

6、了“一半还多的类型,那么“一半要少该怎么解决呢?下面看例4例4、仓库里有一批大米。第一天售出的重量比总数的一半少12吨。第二天售出的重量比剩下的一半少12吨,结果还剩下49吨。这个仓库原有大米多少吨?解析:卖出了一半少12吨,也就是剩下的要比一半多12吨,看方框图49-12×2=74吨74-12×2=124吨小结:解决这一类一半问题时,要充分理解“多减少加的思想。下面大家看练习题5,试试看!练习:三位同学共同买了一些铅笔,甲分得的比总数的一半少1支,乙分得的是余下的一半多一支,丙分得8支。问一共买了多少支铅笔?解析:这一题里面既有“一半多,也有“一半少,那么根据我们前面学的

7、,画方框图8+1×2=18支(18-1)×2=34 (支)过渡:到目前为止,我们学习的都是一个量在变化的过程,那么如果最开始有两个量、三个量互相发生变化,我们能不能用复原法解决呢?答案是肯定的,我们看例题5例5、爸爸买了一些橘子,全家人第一天吃了这些橘子的一半多一个,第二天吃了剩下的一半多一个,第三天又吃了剩下的一半多一个,还剩下一个。问爸爸买了多少个橘子?解析:这一例相对于上一例来说,要复杂一些,因为不是恰好一半了。而是“一半多一个,也就是剩下的为“一半少一个,运算时要在一半的根底上再减去一个。看方框图:1+1×2=4个4+1×2=10个10+1

8、15;2=22个小结:这一例属于典型的一半问题,“一半多一个,计算时需要减一,即多减少加的思想。大家在做这一类题目时,一定要分析清楚,否那么倒推的时候就会出错!下面大家看练习题2,先自己试试。练习:商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台,这个商场原来有洗衣机多少台?解析:95+20×2=230台230+10×2=480台例6、甲、乙、丙、丁四个小朋友有彩色玻璃球共100颗,甲给乙13颗,乙给丙18颗,丙给丁16颗,丁给甲2颗后四人的个数相等。他们原来各有玻璃球多少颗?解析:这一例就比我们刚刚学习的要复杂一些,因为有四个人,他们的玻

9、璃球数都在不停的变化。由我们可以求出,他们变化到最后拥有的玻璃球数:100÷4=25颗,然后我们和前面一样,用方框图把每一个人的玻璃球数变化过程表示出来:甲:乙:丙:丁:100÷4=25颗甲:25-2+13=36颗乙:25+18-13=30颗丙:25+16-18=23颗丁:25-2-16=11颗小结:在这一例中,是多个量之间发生相互变化,在把每一个量从后往前倒推的时候一定要考虑到这个量发生关系的所有变化,不能有遗漏。下面大家自己做练习题4练习:甲乙丙三组共有图书90本,如果乙组借给甲组3本后,又送给丙5本,结果三个组所有图书刚好相等,甲乙丙三个组原有图书各多少本?解析:甲乙

10、丙90÷3=30本甲30-3=27本乙30+5+3=38本丙30-5=25本例7、有甲乙丙三个油桶,各盛油假设干千克,先将甲桐油倒入乙、丙两桶,使他们各增加原有油的一倍;再将乙桶油倒入丙、甲两桶,使他们的油各增加一倍;最后按同样规律将丙桶油倒入甲、乙两桶。这时各桶油都是16千克。求甲乙丙原有油多少千克?解析:这一例是复原法解题的经典类型,称为“同样多问题,即变化量和原来一样,也可以说变为原来的2倍,或者增加一倍等。对于这一类题目,我们通常采用列表法:甲乙丙第3次倒后161616第2次倒后8832第1次倒后42816原来26148下面大家看练习题9练习:甲乙丙三箱内共有384个皮球,先

11、由甲箱内取出假设干个放进乙、丙两箱内,所放个数分别为乙丙当时所有的球数;再由乙箱取出假设干放进甲丙两箱;最后由丙箱取出假设干放进甲乙两箱,放法都同前,结果三个箱子内的皮球数彼此相等。问甲乙丙各箱内开始分别有多少个球?解析:这一题和我们的例题非常相似似,只是题目的说法变了。我们可以抓住“三箱内球数彼此相等这句话一步步往前推,列表如下:384÷3=128个甲乙丙第3次变化后128128128第2次变化后6464256第1次变化后32224128原来20811264例8、两只猴子拿26个桃,甲猴眼疾手快,抢先得到,乙看甲猴拿得太多,就抢去一半;甲猴不服,又从乙猴那儿抢走一半;乙猴不服,甲猴

12、就还给乙猴5个,这时乙猴比甲猴多2个(改一下)。问甲猴最初准备拿几个?解析:从最后一步开始考虑,两只猴子拿桃的总和是没有变的,这时乙猴比甲猴多2个,那么可以得到甲猴:26-2÷2=12个,乙猴:12+2=14个。乙猴不服,甲猴就还给乙猴5个,那么此时甲猴有:12+5=17个,乙猴有14-5=9个;甲猴不服,又从乙猴那儿抢走一半,那么此时甲猴有:17-9=8个 乙猴有:9×2=18个;乙看甲猴拿得太多,就抢去一半,那么此时甲猴有:8×2=16个,乙猴有18-8=10个。由上可知,甲猴最初准备拿16个。三、课堂总结:这一讲我们学习了复原法解应用题,对于一个量的变化过程

13、我们一般采用方框图法来倒推,多个量的用列表法来倒推。在倒推时,每一步运算都变为原来的逆运算,需要注意:从最后的结果或条件出发,逐步向前推导,不得跳跃;列算式的时候要注意运算顺序,要合理使用括号。四、家庭作业练习题1、3、6、8、10五、板书设计复原法解题倒推:从问题的结果向前逐步推理,回到条件。类型:数学运算;一半问题;同样多问题;方框图:单个量列表:多个量六、课后反思参考答案:稳固练习1、 妮妮问王老师今年多大年纪,王老师说:把我的年龄加上9,除以4,减去2,再乘以3,恰好是30岁。问王老师今年多少岁?解析:30÷3 = 10岁 10+2 = 12岁 12×4 = 48岁

14、 48-9 = 39岁2、 商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台,这个商场原来有洗衣机多少台?解析:95+20×2 = 230台 230+10×2 = 480台3、 粮库内有一批大米,第一次运出总数的一半少3吨,第二次运出剩下的一半多5吨,还剩下4吨。问粮库原有大米多少吨?4+5×2 = 18吨 18-3×2 = 30吨4、 贝贝去银行取款,第一次取了存款的一半多50元,第二次取了余下的一半多100元。这时他的存折上还剩1250元。他原有存款多少元?1250+100×2 = 2700元 2700+5

15、0×2 = 5500元5、 有一堆桃,第一只猴拿走其中的一半加半个,第二只猴又拿走剩下的一半加半个,第三、四、五只猴照此方式操作下去,最后还剩下一个桃。问:原来有多少个桃?1+0.5×2 = 3个 3+0.5×2 = 7个 7+0.5×2 = 15个15+0.5×2 = 31个 31+0.5×2 = 63个6、 三位同学共同买了一些铅笔,甲分得的比总数的一半少1支,乙分得的是余下的一半多一支,丙分得8支,问三人共买多少支铅笔?8+1×2 = 18支 18-1×2 = 34支7、 甲、乙、丙三组共有图书90本,如果乙

16、组借给甲组3本后,又送给丙5本,结果三个组所有图书刚好相等,甲、乙、丙三个组原有图书各多少本?90÷3 = 30本 甲 30 -3 = 27(本)丙 30 -5 = 25本 乙 30+3+5 = 38本8、 甲、乙两桶油各有假设干千克,如果要从甲桶中倒出和乙桶同样多的油放入乙桶,再从乙桶中倒出和甲桶剩下的同样多的油放入甲桶。这时两桶油恰好都是36千克。问两桶油原来各有多少千克?甲乙13636236÷2=1836+18=54318+27=4554÷2=279、 甲、乙、丙三箱内共有384个皮球,先由甲箱内取出假设干个放进乙、丙两箱内,所放个数分别为乙、丙当时所有的球数;再乙箱取出假设干放进甲、丙两箱;最后,由丙箱取出假设干放进甲、乙两箱,放法都同前,结果三箱内的皮球个数彼此相等。问甲、乙、丙各箱内开始各有球多少个?384÷3=128个甲乙丙11281281282128÷2=64128÷2=64384-64×2=256364÷2=32384-128=32=224256÷2=12

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论