版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第15卷第9期2011年9月船舶力学JournalofShipMechanicsVol.15No.9Sep.2011ArticleID:1007-7294(2011)09-0988-08ResearchonCalculationMethodsofHydrodynamicCoefficientsfbrSectionswithComplexShapeGAONi,SUNShu-zheng,ZHAOXiao-dong,UJi-de(CollegeofShipbuildingEngineering,HarbinEngineeringUniversity,Harbin150001,China)Abstra
2、ct:Thesource/dipolemixed-distributionapproachbasedonpotentialtheoryissuitablefbrcalculatinghydrodynamicsofsomesectionswithspecialshapes,butthismethodcannotmeetirregularshipswithobviousviscouseffectverywell.Inthispaper,theCFDsoftwareFluentconsideringviscouseffectisusedforsimulatingthebodysurgingintan
3、k.TheRANSmethodisusedforcalculatingthesurgingforceofsections,andthenthehydrodynamicscanbeobtainedbyanalyzingtheforce.ThecomparisonoflongitudinalpredictionresultsoftheshipwithcomplexsectionsbetweenthemethodswithandwithoutcalculatingviscouseffectshowsthattheRANSmethodusedinthispaperisbetterforconsider
4、ingviscouseffect,andthephysicalcharactersofdampingcoefficientsareclosertoreality.Sothemethodisbetterthanregularpotentialmethodfbrshipswithcomplexsectionswhichhaveobviouslyviscouseffects.Keywords:complexshapesection;hydrodynamiccoefficient;potentialtheory;viscosityCLCnumber:U661.32Documentcode:AIntro
5、ductionCalculatinghydrodynamicsisthebaseofthemotionpredictionofships,andalargenumberofresearchbasedonpotentialtheoryhavebeendoneforalongtime,alsothereareseveralengineeringmethodsandtheoryforhydrodynamiccoefficientscalculationsuchassource/dipolemixed-distributionapproach,multipoleexpansionapproach,2.
6、5Dpotentialtheory,3-Dpotentialtheory,andsoon11"31.Themethodsabovecanmeettheengineeringprecisionalx)uttheregularship.Butasthedevelopingofthenewtypeofship,manyirregularshipsappear,likehighperformancemonohullsandmulti-hulledshipswithvariouskindsofappendage.Becauseviscousdamptakeslargeproportionint
7、hehydrodynamicforce,thecalculationofhydrodynamiccoefficientsshouldbemoreaccurate.Thepotentialflowsolvercannottakeviscouseffectintoaccount,asthedevelopingofcomputertechnologyandCFDtechnologyinrecentyearstheRANSmethodaccountingviscouseffecthasbeenusedwidelyinships*performancecomputa-tion,4-51.Received
8、date:2011-04-27Biography:GAONi(1982-),female,Ph.D.studentofHarbinEngineeringUniversity;SUNShu-zheng(1982-),male,Ph.D.,lecturer.Inthispaper,thesource/dipolemixed-distributionapproachand2DRANSmethodwereusedforcomputingthehydrodynamiccoefficientsofsectionswithandwithoutSSB(Semi-submergedBow)回.Theresult
9、scomputingbypotentialtheoryarecomparedtotheresultusingviscousmethod,thentheadvantageanddisadvantagearediscussedbetweenthesemethods.ThispapershowsthattheviscousdampisconsideredbyRANSmethod.Theprecisionofcalculationishigherwithobviousviscouseffect,buttheadvantageislittleofthenormaltypeofshipsbecauseth
10、eviscouseffectisalsolittle.Anywaythispaperadvancesanewwaytocomputethehydrodynamicsandimprovestheprecisionofviscousdampcoefficient.1 Calculatingof2Dsections'hydrodynamiccoefficientsSource/dipolemixed-distributionapproachSource/dipolemixed-distributionapproachissuitabletospecialsectionsuchascatama
11、ran,SWATH,underwatervehicle,andsoon.Fig.lshowsthecoordinatesforthe2Dsection'ssurge.The2DfrequencydomainGreenfunctionisintroducedtosolvetheproblemof2Dsectionsurging.dG搭G、+7(p,q)dydzp(y,z)isfieldpoint,§)issourcepoint华-kG=0(z=0)dzlimVG=0JlimmikG=0The2-DfrequencydomainGreenfunctioncouldbewritte
12、nas:mg)ecoszn(y-?7)dmok-m8G(p,q)=G(y,z;y,()=ln-+2p.v.j'pqc-2mecos«I=Gi+Gz+Gg+GJ221/2221/2where=(7-77)+(z-<)J'斯=履一吁)+(z+<)|Thevelocitypotentialofanypointpintheflowfieldcouldbeexpressedasbelow:dlThelinecpresentstheboundaryofflowfieldwiththenormaldirectionpointingoutsidetheflowfield,
13、andthedirectionisshownasFig.l.Theadditionalmassofsectionmk.anddampingcoefficient与canbeobtainedfromthefollowingequation:心E粉=f+渺RANSmethods2.2.1EstablishmentofgoverningequationReynolds-averagedNavier-Stokesequationsshouldbeexpressedasbelow:duJdxO(5)Momentumequationshouldbeexpressedasbelow:dp%枷,%_fdp印叫
14、电+叫履)可pQ%,)dt,3jCjidx:、dx.whereuiisthetimeaveragevelocitycomponent(u(=u,u2=v,u3=w)forCartesiancoordinates气(£=1,2,3)direction,pisfluiddensity,pistimeaveragepressure,/zisviscouscoefficient,fiisthecomponentofsurfacel)o(lyforceinxtdirectionwhichcanbeputintopressureitemifbodyforceonlycontainsthegrav
15、ity,u/isthefluctuationvelocitycomponentofx.(t=1,2,3)directioninCartesiancoordinates,andpu:il;isReynoldsstresstensor.Turbulenttensionisproportionaltoaveragevelocityandcouldbeexpressedasbelow:/dudu%蚌=*1安+忘1J1(8)(8)whereisturbulenceforceviscouscoefficientandcanbeexpressedasbelow:呻c三where,k,eareturbulen
16、ceenergyandturbulenceenergydissipationrespectively,andcanbecomputedfromthefollowingequation:也L+也吐=_L|*也(9)(10)dt、dx)JwherePkistheproducerofturbulenceenergy,anddx.阴dxiEmpiricalconstantsC=0.09,=1.44,Ct2=1.92,<rA=1.0and5=1.30.Theunknownquanlitiesu,0,u/,p,kand£canbecomputedfromthesixclosedequati
17、onsabove.2.2.2Calculationof2DsectionsurgingTheshipscalculatedinthispaperarethehybridmono-hullwithstabilizingappendageandthemono-hullwithdeep-Vsections,andthesectionsareshowninFig.2.(c)SectionwithSSBandfinFig.2Sectionsofships5001,奸0180*01,炊5e6601500r-01454W-0140D»SO-O1100010«*-
18、00Fig.3Thesketchofregion,meshandfreesurfaceforcalculationInthispaper,thehydrodynamiccoefficientsofthebowwerecalculatedusingRANSmethod.TheunsteadyforcewascalculatedbyFluentwhensectionissurgingslightly.Theflowfield,themeshandthefreesurfaceareshowninFig.3.TheflowfieldofthecomputingmodelisdiscretewithFV
19、M.Thesizeofflowfieldis10timesbreadthxlOtimesdraft;Themeshsizeis0.1monthesectionoftheship,whilethemeshoftheflowfieldistriangleunstructuredandintensivebesidetheshipabout6timesbreadthand4timesdraft.Theflowfieldisdividedintoairpartandwaterpart,andtheVOFmethodisusedforfreesurface;ThePISOarithmeticisemplo
20、yedandtheturbulentflowmodelisRNG-k-£,alsothedynamicmeshingtechniqueisused.Fig.4Verticalunsteadyforceforthesectionsoj=2ttTheresultofswayingforceofdeep-Vsection,sectionwithSSBandsectionwithSSBandfinwhilea)=2irisshowninFig.4.Theaddedmassanddampcoefficientofheavingcouldbegotbyverticalforcecomputing
21、,andtheprincipleisbelow:theheavingadditionalmassisA33,theheavingdampcoefficientis/z33,theheavingdisplacementisZ,theheavingvelocityisZ,theheavingaccelerationisZ,theheavingamplitudeisA,forthesatisfactionoflineartheoryinthispaperAissetas0.02m,theinitialphaseis0°,theradiationforceisF,therestoringfo
22、rceisF,theverticalunsteadyforceisF=F,+F,andtheamplitudeofverticalunsteadyforceisF.WhenZ=0,Z=0,assumingZ=4sin(a>£).2Then:Z=a)Acos(W),Z=-a)Asin(a)t)Because:/=-A33Z-/x33Z,F=-pgBZThustheverticalunsteadyforceisF=F:+F=-A.33Z-pgBZTheverticalunsteadyforceFcouldbecomputedbyFluent,afterdiscretizationi
23、tcanbeexpressedasbelow:F=Fcos(以+。0)=Fcosa>Zcos0-Fsind>Zsin()(11)(12)(11)(12)And:寸燃竺咄Ao,'33"And:FcostoZcos-TsinedfsinAylcoAsin(toz)-fjb33Aa)cos(ot)-pgBAsina)t)whereBisthewaterlinebreadth,Aistheheavingamplitude,Faistheheavingforceamplitude,0()istheinitialphase,p,g,B,Aando)isknown.Thehea
24、vingadditionalmassA33anddampcoefficient/z,33couldbegotwhenFand0()arecomputedfromtheverticalunsteadyforceF.1.1 CalculatingresultsofhydrodynamiccoefficientsFig.5Addedmassofsection(noSSB)Fig.6Dampingcoefficientofsection(noSSB)Fig.7Addedmassofsection(withSSB)Fig.8Dampingcoefficientofsection(withSSB)Fig.
25、10Dampingcoefficientofsection(SSB+fin)Usetheabovemethodwecangettheaddedmassanddampingcoefficientofthesection,andthecalculatingresultsofsectionswithandwithoutSSBareshowninFigs.5-10.Thecalculationresultsshowthatviscousdamptakesasmallproportionofpitchingdampindeep-VsectionwithoutSSB,andtheresultcalcula
26、tedbyFluentisalmostthesametothehydrodynamiccoefficientsbysource/dipolemixed-distributionapproach.TheviscousdamptakesalargeproportioninsectionwithSSB,consequentlytheresultcalculatedbyFluentismoreaccuratethantheonebypotentialflowtheory.2 TheresultsofmotionpredictionThepredictionmodelusedinthispaperisS
27、TFmethod,whichisusefulforship'slongitudinalmotionprediction.TheviscousmodificationhydrodynamiccoefficientisthehydrodynamicsbyFluentsubtractingthehydrodynamicsbypotentialtheory,andtheverticalequationofmotioncouldbeexpressedasfollows:(13)M+Ai3+A33)Z+|B33+B33)Z+C33Z+(435+4*5吊+区+政)e+C350=F3e*)0+(%+K
28、)0+GW+3+兀)2+(%+房)2+%Z吼e*'wherethefactorwith*isviscouscorrectionhydrodynamiccoefficients.Oneofthetwoshipswhichwerepredictedinthispaperisadeep-Vmonohull,theotherisahybridmonohullwithSSBandfins.Andthetwoshipsarebothabout1200tonsweight,84meterslengthand10metersbreadth.Thelongitudinalpredictionresult
29、sofhybridmonohullwithSSBandfinsinheadwaves(7*r=0.32,0.43)areshowninFig.l1,andthelongitudinalpredictionresultsofdeep-VmonohullwithoutSSBinheadwaves(77=0.32,0.43)areshowninFig12.a.ComparisonofBowaccelerationbetweenFluentandpotentialmethod(Ar=0.32)OS101.5M.2.02.6b.ComparisonofheaveRAObetweenFluentandpo
30、tentialmethod(?r=0.32)c.ComparisonofpitchRAObetweenFluentandpotentialmethod(/r=0.32)1.0-1d.ComparisonofbowaccelerationbetweenFluentandpotentialmethod(Ar=0.43)Predictionresuit9(Rucnt)Fredtcuonmults(PoUntiaJ)Modeltearetuto0$1.0Predictionrwulu(F1ueet)-PredictionrwuhXPounbal)Modelrwultif.Comparisonofpit
31、chRAObetweenFluentandpotentialmethod(/r=0.43)Fig.11Predictionresultsofhybridmonohull(?r=0.32,0.43)e.ComparisonofheaveRAObetweenFluentandpotentialmethod(?=0.43)a.Comparisonofbowaccelerationbetweena.Comparisonofbowaccelerationbetweenb.ComparisonofheaveRAObetweenFluentandpotentialmethod(?r=0.32)Predict
32、ionrcsuhs(Fluent)Predictionrwuk<Potenual)Modelteatreauluc.ComparisonofpitchRAObetweFluentandpotentialmethod(Fr=032)d.ComparisonofbowaccelerationbetweenFluentandpotentialmethod(/r=0.43)e.ComparisonofheaveRAObetweenFluentand)x)lentialmethod(7r=0.43)Fig.12Predictionresultsof(leep-Vmonohull(&=0.3
33、2,0.43)f.ComparisonofpitchRAObetweenFluentandpotentialmethod(7*r=0.43)Predictionrcwlu(Fluent)Predictionreaulta(Polcntitl)ModeltatrwutaThecomparisonbetweenthetwocalculationmethodsandmodeltestresultsindicatesthat,forhybridmonohullthepredictedresultswithviscousmodificationarebetterthanpotentialmethod,w
34、hilefordeep-Vmonohullthepredictedresultswithviscousmodificationarealmostthesametopotentialmethod.3 ConclusionsFromtheresearchofthispaperwecanobtainthefollowingconclusions:(1)Fromthecomparisonofhydrodynamiccoefficientscalculationresultswecanseethat,theviscousdamptakesasmallproportionofpitchingdampind
35、eep-VsectionwithoutSSB,andtheresultcalculatedbyFluentisalmostthesametothehydrodynamiccoefficientsbysource/dipolemixed-distributionapproach.However,theviscousdamptakesalargeproportioninsectionwithSSBandfin,consequentlytheresultcalculatedbyFluentismoreaccuratethantheonebypotentialflowtheory.(2)Fromthe
36、comparisonofpredictionresultsandmodeltestresultswecanseethat,ibrdeep-Vmonohullthepredictionresultsofviscousmodificationmethodisalmostthesametopotentialtheory,andforhybridmonohullwithSSBandfinthepredictionresultsofviscousmodificationmethodarebetterthanpotentialtheory.Allinall,themethodusedinthispaperwithviscousmodificationisagoodwayforhydrodynamicscalculationespeciallyforsectionswithcomplexshapewettedsurface.References11LiJide.SeakeepingperformanceofshipsM.Beijing:Nation
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届安徽省南陵县联考八年级物理第一学期期末学业质量监测试题含解析
- 河南省邓州市2026届九上物理期中学业水平测试模拟试题含解析
- 2026届江苏省扬州树人学校物理八年级第一学期期末质量检测模拟试题含解析
- 河北省唐山路北区七校联考2026届物理九上期末调研试题含解析
- 2026届湖南省武汉武昌区五校联考物理九上期中经典试题含解析
- 广东省龙华新区2026届九年级物理第一学期期末检测试题含解析
- 2026届重庆市江津区物理九年级第一学期期末学业水平测试试题含解析
- 2026届山东省菏泽市名校九上物理期中经典模拟试题含解析
- 2026届宜宾市重点中学物理九上期末联考试题含解析
- 北京市西城区北京师范大第二附属中学2026届八年级物理第一学期期末质量检测模拟试题含解析
- 2025北京市尖垡留置管理中心招聘事业单位6人考试参考试题及答案解析
- 检验科知识技能培训课件
- (2025年)册人力资源管理试题及答案
- 2025年河北邯郸市第一医院公开招聘控制数管理人员150名考试参考题库及答案解析
- 纪委监委试题题库及答案
- 蛋糕营养科普知识培训总结课件
- 考点解析-人教版八年级《力》专题攻克试题(详解版)
- 2025年考编护理解剖学题库及答案
- 绿色工厂自评价报告及第三方评价报告
- 《材料分析测试技术》全套教学课件
- 安全学原理第2版-ppt课件(完整版)
评论
0/150
提交评论