




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、姓名 学号 学院 专业 座位号 ( 密 封 线 内 不 答 题 )密封线线_ _ 诚信应考,考试作弊将带来严重后果! 华南理工大学2011年期末考试试卷(A)卷弹性力学注意事项:1. 考前请将密封线内各项信息填写清楚; 2. 所有答案请直接答在答题纸上; 3考试形式:闭卷; 4. 本试卷共三大题,满分100分,考试时间120分钟。题 号一二三总分得 分评卷人一、简答题(共20分)1、五个基本假定在建立弹性力学基本方程时有什么用途?(10分)答:1、连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化
2、规律。 (2分)2、完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。 (4分)3、均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比等)就不随位置坐标而变化。 (6分)4、各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。进一步地说,就是物体的弹性常数也不随方向而变化。 (8分)5、小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形
3、和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。 在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。 (10分)2、试分析简支梁受均布荷载时,平面截面假设是否成立?(5分)解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。所以,严格来说,不成立。3、为什么在主要边界
4、(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替教材中式(2-15),将会发生什么问题?(5分)解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。如果在占边界绝大部分的主要边界上用三个应力边
5、界条件来代替精确的边界条件。教材中式(2-15),就会影响大部分区域的应力分布,会使问题的解答具有的近似性。三、计算题(80分)2.1 已知薄板有下列形变关系:式中A,B,C,D皆为常数,试检查在形变过程中是否符合连续条件,若满足并列出应力分量表达式。(10分)1、 相容条件:将形变分量带入形变协调方程(相容方程)其中 所以满足相容方程,符合连续性条件。 (4分)2、 在平面应力问题中,用形变分量表示的应力分量为 (10分)2.2如图所示水坝,试写出其边界条件。(10分)左侧面: (2分)由应力边界条件公式,有 (4分) (6分)右侧面: (8分) (10分)2.3 图示悬臂梁,梁的横截面为矩
6、形,其长度为L,宽度取为1,高度为2h,右端固定、左端自由,荷载分布在其右端上,其合力为P(不计体力),求梁的应力分量。(20分)解:这是一个平面应力问题,采用半逆解法求解。(1)选取应力函数。由材料力学可知,悬臂梁任一截面上的弯矩方程M(x)与截面位置坐标x成正比,而该截面上某点处的正应力又与该点的坐标y成正比,因此可设 (a) (3分)式中的为待定常数。将式(a)对y积分两次,得 (b)式中的,为x的待定函数,可由相容方程确定。将式(b)代入相容方程, 得 (5分)上式是y的一次方程,梁内所有的y值都应是满足它,可见它的系数和自由项都必须为零,即,积分上二式,得式中为待定的积分常数。将,代
7、入式(b),得应力函数为.(c) (8分)(2)应力分量的表达式 (10分)(3)考察应力边界条件:以确定各系数,自由端无水平力;上、下部无荷载;自由端的剪力之和为P,得边界条件 ,自然满足; ,得; (12分)上式对x的任何值均应满足,因此得,即 (14分),得X取任何值均应满足,因此得. (16分)将式(e)代入上式积分,得计算得 , (18分)其中,横截面对Z轴的惯性矩。最后得应力分量为 (20分)2.4 如题下图所示的悬臂梁,长度为l,高度为h, l>>h,在上边界受均布荷载q,试检验应力函数能否成为此问题的解?如可以,试求出应力分量。 (10分)解 (1)相容条件将代入相
8、容方程,得,若满足相容方程,有 (2分) (2)应力分量表达式 (4分)(3)考察边界条件;主要边界上,应精确满足应力边界条件(6分)在次要边界上x=0上,主矢和主矩为零,应用圣维南原理,用三个积分的应力边界条件代替 (e) 联立求解式(a),(b),(c),(d)和(e),得 (8分)将各系数代入应力分量表达式,得 (10分)2.5楔形体在两侧面上受有均布剪力q,如下图所示,试求其应力分量。(10分) 【解】(1)应用应力函数,进行求解。由应力函数得应力分量 (2分)(2)考察边界条件:根据对称性,得 (a) (b) (c) (d) (4分)同式(a)得 (e)同式(b)得 (f)同式(c)
9、得 (g)同式(d)得 (h) (6分)式(e) 、(f) 、(g)、 (h)联立求解,得 (8分)将以上各系数代入应力分量,得 (10分)2.6 设半平面体在直边界上受有集中力偶,单位宽度上力偶矩为M,如下图所示,试求应力分量。 (20分) 【解】应用半逆解法求解。(1) 按量纲分析方法,单位宽度上的力偶矩与力的量纲相同。应力应与有关,由于应力的量纲是单位面积上的力,即L-1MT-2,应力只能以形势组合。 (2分)(2) 应比应力的长度量纲高二次幂,可假设。(3) 将代入相容方程,得 (4分)删去因子,得一个关于的常微分方程。令其解为,代入上式,可得到一个关于的特征方程, (a)(6分)其解为,于是得到的四个解;前两项又可以组合为正弦、余弦函数。由此得 (b)(8分)本题中结构对称于的x轴,而M是反对称荷载,因此,应力应反对称于x轴,为的奇函数,从而得A=D=0。 (c)(10分)(4)由应力函数得应力分量的表达式 (12分)(5)考察边界条件。由于原点O有集中力偶作用,应分别考察大边界上的条件和原点附近的条件。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 组建家庭恋爱协议书
- 组队露营安全协议书
- 设计监理委托协议书
- 《创新视觉传达管理》课件
- 健康管理实务模拟试题(附参考答案解析)
- 采油地质工初级试题库+参考答案解析
- 8月水利工程师-建筑材料习题与参考答案解析
- 稀土金属冶炼与环境保护技术应用考核试卷
- 意外伤害保险与保险业人才培养的教育培训考核试卷
- 制革行业的绿色供应链管理考核试卷
- 租地合同补充协议格式
- 果戈里介绍课件
- 四川省泸州市2025届高三第三次教学质量诊断性考试地理试题(含答案)
- 小学音乐(聆听)小小少年教案设计
- 人教版八年级物理下册《大气压强》压强 教学课件
- 2025届陕西省高考适应性检测(三)数学试题+答案
- 超市商品补货管理制度
- 激光熔覆技术综述
- 2025年阳江海上风电项目可行性研究报告
- 2025新版静疗规范
- 水价与水市场机制联动机制-全面剖析
评论
0/150
提交评论