




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.7 数列前n项和求法知识点一 倒序相加法特征描述:此种方法主要针对类似等差数列中,具有这样特点的数列思考: 你能区分这类特征吗?知识点二 错位相减法特征描述:此种方法主要用于数列的求和,其中为等差数列,是公比为q的等比数列,只需用便可转化为等比数列的求和,但要注意讨论q=1和q1两种情况思考:错位时是怎样的对应关系?知识点三 分组划归法特征描述:此方法主要用于无法整体求和的数列,例如1,+,可将其通项写成等比、等差等我们熟悉的数列分别进行求和,再综合求出所有项的和思考:求出通项公式后如何分组?知识点四 奇偶求合法特征描述:此种方法是针对于奇、偶数项,要讨论的数列例如,要求Sn,就必须分奇偶
2、来讨论,最后进行综合思考:如何讨论?知识点五 裂项相消法特征描述:此方法主要针对这样的求和,其中an是等差数列思考:裂项公式你知道几个?知识点六 分类讨论法特征描述:此方法是针对数列的其中几项符号与另外的项不同,而求各项绝对值的和的问题,主要是要分段求.思考:如何表示分段求和?考点一 倒序相加法例题1:等差数列求和变式1:求证:变式2:数列求和考点二 错位相减法例题2:试化简下列和式: 变式1:已知数列,求前n项和。变式2:求数列;的前n项和变式3:求和:考点三:分组划归法例三:求数列1,+的和.变式1:5,55,555,5555,;变式2:;变式3:数列1,(1+2),(1+2+22),(1
3、+2+2 2+2 n1),前n项的和是( ) A2 n B2 n2 C2 n+1n2 Dn2n考点四:奇偶求合法例四:变式1:求和:变式2:已知数列an中a1=2,an+an+1=1,Sn为an前n项和,求Sn变式3:已知数列an中a1=1,a2=4,an=an-2+2 (n3),Sn为an前n项和,求Sn考点五:裂项相消法例五:an为首项为a1,公差为d的等差数列,求变式1:;变式2:数列通项公式为;求该数列前n项和变式3:求和考点六:分类讨论法例六:在公差为d的等差数列an中,已知a110,且a1,2a22,5a3成等比数列(1)求d,an;(2)若d<0,求|a1|a2|a3|an
4、|.变式1:在等差数列中,其前项和为.(1)求的最小值,并求出的最小值时的值;(2)求.变式2:设数列满足,已知存在常数使数列 为等比数列.求.变式3:已知等比数列中,=64,q=,设=log2,求数列|的前n项和.答案及解析考点一例一:等差数列求和 把项的次序反过来,则:+得:变式1:思路分析:由可用倒序相加法求和。证:令则 等式成立变式2:设, 又, ,考点二例二:解:若x=1,则Sn=1+2+3+n = 若x1,则 两式相减得:+ 变式1:思路分析:已知数列各项是等差数列1,3,5,2n-1与等比数列对应项积,可用错位相减法求和。解: 当 当变式2:, 当时, 当时, , , 两式相减得
5、 ,变式3: 解: 由得:考点三例三:求数列1,+的和.解: 变式1:变式2:, 原式变式3:C考点四例四:解:当n = 2k (kN+)时, 当, 综合得:变式1:解:当为偶数时: 当为奇数时:变式2:解:当n为偶数时: 当n为奇数时: 变式3:解:an-an-2=2 (n3) a1,a3,a5,a2n-1为等差数列;a2,a4,a6,a2n为等差数列 当n为奇数时: 当n为偶数时: 即nN+时, n为奇数时: n为偶数时:考点五例五:解: 变式1:,变式2:解:变式3:思路分析:分式求和可用裂项相消法求和.解: 练习:求 答案: 考点六例六:解:(1)由题意得a1·5a3(2a22)2,即d23d40.所以d1或d4.所以ann11,nN*或an4n6,nN*.(2)设数列an的前n项和为Sn.因为d<0,由(1)得d1,ann11,则当n11时,|a1|a2|a3|an|n2n.当n12时, |a1|a2|a3|an|Sn2S11n2n110.综上所述,|a1|a2|a3|an|变式1:解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电器分销合同协议书范本
- 策划赞助合作协议书范本
- 破坏房屋赔偿协议书范本
- 电梯轿厢清洁协议合同书
- 监控质保与售后合同范本
- 驾校学员培训合同协议书
- 项目工程挂靠协议书范本
- 环保投资股东协议书模板
- 煤矿合同续签协议书模板
- 权利质押反担保合同范本
- 酿酒机器相关项目建议书
- LNG加气站节能减排方案
- 外研版八年级上册英语期末复习:阅读理解 刷题练习题30篇(含答案解析)
- 退休延期留用岗位协议书
- 生物安全记录表
- DB34T 1708-2020 电站堵阀检验规程
- 《幼儿园保育教育质量评估指南》引领下的园本教研转向与新生态
- 四年级数学(小数加减运算)计算题专项练习与答案汇编
- 《老年护理学》考试复习题库(含答案)
- 第1章有理数单元同步练习题 2024-2025学年华东师大版数学七年级上册
- GB/T 29239-2024移动通信设备节能参数和测试方法基站
评论
0/150
提交评论