




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、核反应堆物理分析 中子在介质中的输运过程中的运动状态由位置矢量r(x,y,z),能量 E, 和运动方向表示。通过极角和方位角来表示中子角密度函数n(r,E, )定义: 中子角通量密度定义为:对中子角密度和中子角通量密度积分便可得到与运动方向无关的标量中子密度和标量中子通量密度这些量是反应堆物理经常需要计算的量。ddrddrrdSdsinsin222)(),(),(EvErnErdErnErn4),(),(dErEr4),(),( 的表示要求解反应堆内中子密度和中子通量密度的分布一般采用两种方法:u确定论方法-根据边界条件和初始条件解数学物理方程 得出所求问题的精确解或近似解。 适用于问题的几何
2、结构不太复杂的情况。u非确定论方法又称为Monte Carlo方法,是基于统计 概率理论的方法,适用于问题的几何结构 比较复杂的情况。本章是用确定论方法研究中子的输运过程建立描述中子在介质输运过程的中子扩散方程。中子扩散方程是研究中子在介质内运动的基本方程,它是研究反应堆理论的重要工具和基础。3.1 单能中子扩散方程单能中子扩散方程 中子的扩散和气体分子的扩散很相似,中子的扩散和气体分子的扩散很相似,它们都从浓度高的区域向浓度底的区域它们都从浓度高的区域向浓度底的区域扩散,扩散的速率与粒子的密度的梯度扩散,扩散的速率与粒子的密度的梯度成正比,既都服从成正比,既都服从“斐斐克扩散定律克扩散定律”
3、。由于在热堆中子密度(由于在热堆中子密度(1016/m3)比介质)比介质的原子核密度(的原子核密度( 1028/m3 )小很多,因)小很多,因此它与气体分子的扩散又有不同,主要此它与气体分子的扩散又有不同,主要区别在于:区别在于:分子扩散是由于分子间的分子扩散是由于分子间的碰撞引起,而中子的扩散主要是由中子碰撞引起,而中子的扩散主要是由中子与原子核之间碰撞的结果,中子之间的与原子核之间碰撞的结果,中子之间的相互碰撞可以忽略不计。相互碰撞可以忽略不计。中子与介质原子核 的散射碰撞3.1 .1 斐斐克定律克定律 下面我们通过中子扩散过程来推导下面我们通过中子扩散过程来推导稳态情况下中子扩散方程,并
4、假设:稳态情况下中子扩散方程,并假设:u介质是介质是 无限的、均匀的无限的、均匀的u在实验室坐标系中散射是各向同性在实验室坐标系中散射是各向同性u介质的吸收截面很小即介质的吸收截面很小即asu中子通量密度是随时间位置缓慢中子通量密度是随时间位置缓慢 变化的函数变化的函数 设在设在r处的体积元处的体积元 内中子通量内中子通量密度为密度为?(r),每秒发生散射的中子数目每秒发生散射的中子数目为为 ,每秒自体积元内散射出来沿着每秒自体积元内散射出来沿着方向未经碰撞到达方向未经碰撞到达dA上的中子数是上的中子数是cosdldAdV dVrs)(dAdlerlsscos)(41从-到0积分式中?(r)不
5、是r的函数, 是一个未知函数,所以上述积分无法计算, 我们可以将?(r)按r的函数展开这里 沿方向的方向倒数,可以表示如下:x, y, z为在x, y, z轴的投影,完成以上积分可得沿方向每秒穿过dA上的中子数为:dAdlerdAlsscos)(40 dldlrr)()(dldzyxdldzzdldyydldxxdldzyxcossinxsinsinycoszrrsdldrdA1)(cos4对 的半空间积分,就可以得到每秒沿z轴正方向自下而上穿过dA的中子数 。完成积分可得:对 的半空间积分,就可以得到每秒沿z轴负方向自上而下穿过dA的中子数 。0zeddzyxrdAddldrdAdAJzyx
6、srrsezzsincos)(1)(41)(cos420200)(zJzrrrJsz)(614)()(0zezrrrJsz)(614)()(zJ单位时间内沿着z方向穿过dA平面单位面积的净中子数Jz为 叫做z方向的中子流密度或净中子流密度,若dA的取向与x轴垂直,沿着x方向穿过dA平面单位面积净中子数Jx为同样,沿着y方向穿过dA平面单位面积净中子数Jy为如果所讨论的面元并不垂直于任何坐标轴,那么单位时间内穿过dA平面单位面积净中子数J为三个分量之和zrrJrJrJszzz)(3)()()()(rJzxrrJsx)(3)(yrrJsy)(3)(cos)(cos)(cos)(3zryrxrJs可
7、以把上式写成矢量形式即式中 斐克定律矢量J称为中子流密度,Jx ,Jy, Jz 是它在 x,y,z 轴上的投影,它表示空间任何一个点上中子宏观净流动的方向和梯度。强调:J即不同于中子束强度 I,也不同于中子通量密度?(r,)。 它是由许多具有不同方向的微分中子束矢量合成的量, 表示该处中子的净流动情况情况。它与中子通量密度 ?(r,)的关系为斐克定律表示:中子流密度J正比于负的中子通量密度梯度, 其比例常数叫作扩散系数,并用D表示。斐克定律可 写成nJJnkjincoscoscosgradkJjJiJJszyx3drrJ4),()(DgradJ3sD推导过程中使用了在实验室坐标系中中子的散射是
8、各向同性的假设,实际计算中应对散射的各向异性进行修正,必须用输运的平均自由程 tr代替散射平均自由程s,扩散系数D可写为 为平均散射角余弦。斐可定律表明: 任一处净中子流动的方向与中子通量密度分布的梯度的方向相反。grad? 的方向指向?的增加方向,所以 J的方向指向?减少最快的方向。3trD01strA3203.1 .2 单能中子扩散方程的建立单能中子扩散方程的建立 核反应堆理论所基于的一个基本原理就是核反应堆理论所基于的一个基本原理就是”中子数中子数守恒守恒”,即在即在一定的体积内一定的体积内,中子数对时间的变化率应等于该体积中子数对时间的变化率应等于该体积中中子的产生率减去该体积内中子的
9、吸收率和泄露率子的产生率减去该体积内中子的吸收率和泄露率. 中子中子数的数的守恒方程可以表达为守恒方程可以表达为中子的扩散方程就是基于这一平衡原理建立的。中子的扩散方程就是基于这一平衡原理建立的。u泄露率泄露率 利用高斯散度公式利用高斯散度公式)()()(),(ALSdVtrndtdV吸收率泄露率产生率SdSntrJ),(泄露率VVSdVtrJdivdVtrJdSntrJ),(),(),(泄露率u产生率 设中子源分布函数用S(r,t)表示,在体积V内中子产生率u吸收率 在体积V内中子吸收率中子数的守恒方程可以表达为去掉等式两边的积分可得方程叫做连续方程,在反应堆理论计算中具有非常主要的地位。无
10、论斐可定律是否适用,该方程都是普遍成立。VdVtrS),(产生率VadVtr ),(吸收率VVaVVdVtrdivJdVtrdVtrSdVtrndtd),(),(),(),(),(),(),(),(trdivJtrtrSttrna利用可得在斐可定律成立的基础上,连续方程可以写为:这是单能的中子扩散方程,如中子通量密度不随时间变化,上式就变为:称为稳态单能的中子扩散方程,这个方程是以斐可定律为基础得到,它的应用受到斐可定律适用范围的限制,仅适用于单能中子情况。 是拉普拉斯算符,在不同坐标系的表示式为:zDzyDyxDxDgraddivdivJ)(2222222DzyxD泄露率),(),(),()
11、,(12trtrDtrSttrva0)()()(2rSrrDa22222222 zyx直角坐标系2222222211 zrrrr柱坐标系22222222222sin1cot112 rrrrrr球坐标系3.1 .3 中子扩散方程的边界条件中子扩散方程的边界条件 必须用边界条件来确定扩散方程的解中的任意积分必须用边界条件来确定扩散方程的解中的任意积分常数常数,边界条件的数目应恰好使方程由唯一的解。解扩散方程边界条件的数目应恰好使方程由唯一的解。解扩散方程常用常用的边界条件有:的边界条件有:u扩散方程适用范围,中子通量密度必须是正的、有限扩散方程适用范围,中子通量密度必须是正的、有限实数实数u在两种
12、不同扩散性质的介质交界面上,垂直于分界面在两种不同扩散性质的介质交界面上,垂直于分界面的中子流密度和中子通量密度相等。的中子流密度和中子通量密度相等。两式相加减得扩散方程的边界条件:两式相加减得扩散方程的边界条件:BxAxJJBxAxJJBBAAdxdDdxdDBA在两种介质的分界面上的中子扩散u介质与真空交界外表面上从 真空返回介质的中子流等于零即或假设从交界面处将中子通量密度的分布曲线按它在交界面处的斜率向真空作直线外推,则在离开交界面距离d处的位置上中子通量密度为零, 我们有d称为直线外推距离00 xxJ064000 xtrxxdxdJtrxdxd2300ddxdx00trd32 应用输
13、运理论和扩散理论的外推距离求得的扩散方程的解以上d值是不准确的,因为d值是根据扩散定律推导而来,而扩散定律不适用于真空交界处。更精确的中子输运理论所得到的平面d值为 。在自由外表面的边界条件可以用更简单的形式表示:在自由表面外推距离d处,中子通量密度为零。trd7104. 03.1 .4 斐斐克定律和扩散理论的适用范围克定律和扩散理论的适用范围 在推导斐在推导斐克定律时,我们做了一些假设,所以斐克定律克定律时,我们做了一些假设,所以斐克定律 的应用范围是有限制的。的应用范围是有限制的。u假定了扩散介质是无限的假定了扩散介质是无限的 在有限的介质内,在距离其表面几个自由程以外的全部在有限的介质内
14、,在距离其表面几个自由程以外的全部 区域斐区域斐克定律时成立的,而在距真空边界两三个自由程克定律时成立的,而在距真空边界两三个自由程以内区域,它是不适用的。以内区域,它是不适用的。u推导中中子通量密度展成泰勒级数并只取到了一级项推导中中子通量密度展成泰勒级数并只取到了一级项 这要求在所讨论点的几个平均自由程内,中子通量密度这要求在所讨论点的几个平均自由程内,中子通量密度 必须缓慢变化或它的梯度变化不大。必须缓慢变化或它的梯度变化不大。 在控制棒附近或两在控制棒附近或两 种扩散性质明显不同的介质交界面附近的几个平均自由种扩散性质明显不同的介质交界面附近的几个平均自由程内,斐克定律不适用。此外,斐
15、克定律只适用于程内,斐克定律不适用。此外,斐克定律只适用于as弱吸收介质。弱吸收介质。 u推导中并没有考虑中子源的贡献,中子流密度的贡献只 是来自中子与介质核的散射碰撞 在强中子源两三个平均自由程的区域内,斐克定律不 适用。3.2 非增殖介质内中子扩散方程的解非增殖介质内中子扩散方程的解稳态单能的中子扩散方程稳态单能的中子扩散方程无源情况下,即除中子源所在的位置以外的无源区域无源情况下,即除中子源所在的位置以外的无源区域,扩散扩散方程有以下形式方程有以下形式: 或或L称为中子的扩散长度称为中子的扩散长度,它表征中子在介质中扩散特征的一它表征中子在介质中扩散特征的一个重要的量。以上方程称为波动方
16、程或亥姆霍兹方程,个重要的量。以上方程称为波动方程或亥姆霍兹方程, 加加上适当的边界条件就可以得出以上数理方程的解。下面列上适当的边界条件就可以得出以上数理方程的解。下面列出一些常见的简单几何形状下波动方程的普遍解。出一些常见的简单几何形状下波动方程的普遍解。0)()()(2rSrrDa0)()(22LrraDkL2210)()(22rr解的形式一维平板球 或一维圆柱22B2B222ddx sincosABxCBxAeCesincoshBxBxABxCBx或222d2 dddrrr sincosBrBrACrreeBrBrACrrsinhcoshBrBrACrr222d1 dddrr r 00
17、()()AI BrCY Br00AI () CK ()BrBr注:分别是第一类和第二类零阶贝塞尔函数; 分别是第一类和第二类零阶修正贝塞尔函数。 (见附表8)。在一些几何形状情况下波动方程 的解下面我们讨论几种特殊情况下扩散方程的解,它可以帮助我们掌握和熟悉扩散方程的求解和如何使用边界条件:u无限介质内点源的情况 在介质中有一个每秒各向同性放射出S个中的点源,采用 球坐标,原点选择在点源上。球对称的扩散方程为:这个方程在r=0处不成立,其边界条件为:(1)除r=0处以外,中子通量在各处均为有限值;(2)中子源条件: 引入新变量 ,代入扩散方程可将扩散方程化为: )0(, 0)()(2222rL
18、rdrrdrdrdSrJrr)(4lim20ru 0222Ludrud方程的解为:所以:C=0, 所以 由根据中子源边界条件:得到最后得到无限介质内的中子通量密度为:LrLrCeAeu/reCreArLrLr/)(reArLr /)(LrerrLDAdrrdDrJ/2)11()()(SeLrDArJrLrrr/020)1(4lim)(4limDSA404)(/rDrSerLru无限平面源位于有限厚度 介质内的情况设源为强度为S的平面中子源,扩散方程为边界条件为:(1)(2)中子源条件当x为正值时,扩散方程的解为:由边界条件(1)可得:00)()(222xLxdxxd0)2/(,)2/(aax时
19、当2/)(lim0SxJxLxLxCeAex/)(LaAeC/平面源位于有限厚介质的情况通量密度可以表达为:根据边界条件(2)可以得到:中子通量密度的解为:由于对称性,用|x|代替x可得到对所有x适用的中子通量密度的解用 乘分子和分母,并利用双曲函数性质可得:)(/ )(/LxaLxeeAx1/)1(2LaeDSLALaLxaLxeeeDSLx/ )(/12)(LaLxaLxeeeDSLx/|)|(/ |12)()2/cosh(2/|)|2sinh(2)(LaLxaDSLxLae2)(21sinhuueeu)(21coshuueeu通过实际的边界向外泄露的中子流密度等于对于无限介质平面源情况,
20、a,有我们可以把扩散长度看作中子通量密度的衰减长度,由图中可以看出当介质厚度为扩散长度的三倍时,除在边界附近,中子通量密度的分布与无限介质内的分布相差不多。对于单能的情况,反射层厚度大于三个扩散长度时,其效果就大致和无限厚度相当。因此,没有必要使用过厚的反射层。)2/cosh(2)/cosh(2/LaLdSdxdDJdaLxeDSLx/ |2)(不同厚度介质内的中子通量密度分布u包含两种不同介质的情况 在不同介质的交界面上扩散方程必须满足交界面边界条件边界条件:x为正值时,扩散方程的解是: 和2|, 0)(1)(0,2|, 0)(1)(222222121212axxLdxxdxaxxLdxxd
21、2/)(lim)2( |102SxJxxx中子源条件:)趋近于零。(时,)当(2/222/1121)4()2/()2/()3(axaxdxdDdxdDaa)/sinh()/cosh(11111LxCLxA22/2/22LxLxeCeA双区介质内中子通量密度分布由边界条件(1)可得C2=0,边界条件(2)可得:由边界条件(3)和(4)可得:图中虚线部分代表的是没有介质2时,中子通量密度的分布。1112DSLC)2/sinh()2/cosh()2/sinh()2/cosh(2121112112121111LaLDLaLDLaLDLaLDDSLA11211122212)2/sinh()2/cosh(
22、)2exp(2LaLDLaLDLaLSLA双区介质内中子通量密度分布* 反照率反照率 介质介质 A 介质介质 B J+当平板介质外再围上一层扩散介质后,当平板介质外再围上一层扩散介质后,中子通量密度分布的下降将比于真空交中子通量密度分布的下降将比于真空交 J-界时减缓许多。这就是堆芯使用反射界时减缓许多。这就是堆芯使用反射层的原因。层的原因。反射层的效率可以通过反反射层的效率可以通过反射系数或反照率表示:射系数或反照率表示:根据扩散定律,反照率可写为:根据扩散定律,反照率可写为:通常反照率采用反射介质的性质来表示。反照率不仅取通常反照率采用反射介质的性质来表示。反照率不仅取决于决于反射介质的材
23、料特征,而且还取决于系统尺寸和几何形反射介质的材料特征,而且还取决于系统尺寸和几何形状。状。 JJdxdDdxdDdxdDdxdDJJ21212424对于无限平板反射层,反照率等于对于有限厚度的反射层a时,。反照率的重要应用在于用来作为于反射层介质相邻的分界面上的边界条件,以代替反射层介质。如果能精确知道堆芯水反射层的反照率,在作芯部计算时可以在芯部于反射层上应用下列边界条件以代替反射层:这样,就不必对反射层部分进行计算,从而节省大量计算时间。LxCeLDLD2121)coth(21)coth(21LaLDLaLDJJ3.4 扩散长度、慢化长度和徙动长度扩散长度、慢化长度和徙动长度u扩散长度扩
24、散长度 大多数元素散射截面与能量无关,而吸收截面服从大多数元素散射截面与能量无关,而吸收截面服从1/v 律,当热中子能谱按麦克斯韦分布时,热中子吸收截面等于律,当热中子能谱按麦克斯韦分布时,热中子吸收截面等于a,0 是能量为是能量为 En =0.0253 eV 的中子吸收截面,的中子吸收截面,Tn 为为中中子温度,子温度,ga 是非是非 1/v 修正因子,修正因子,代入上式代入上式 32traaDLanaagT29320,2)(1293202nanTgTLL 为了阐明扩散长度的物理意义,我们计算热中子从产生地点到被吸收地点穿行距离的均方值 对于无限介质中的点源,在球壳内每秒被吸收的中子数是所以均方值 (空间二次距)可以表示成将点源的中子通量密度代入可得: 或 对于平面源的情况有2rdrrra)(422r020222)(4)(4(drrrdrrrrraa200326/LerdrerrLrLr2261rL2221xL点源空间二次矩的计算 从计算可以看出,扩散长度L的大小直接影响堆内热中子的泄露。 L愈大,则热中子自产生地点到被
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 车检设备转让合同协议
- 活动主持协议书
- 路面塌方清理协议书范本
- 买卖废铁合同协议书
- 配件供销合作协议合同
- 运输品赔偿协议书范本
- 互联网广告投放与效果评估协议
- 转让汽车维修店合同协议
- 软件购买培训合同协议
- 医院设备采购与售后服务条款协议
- 医院安全风险分级管控清单
- 2023年江苏无锡市初中学业水平考试地理试卷真题(答案详解)
- 铁总物资〔2015〕117号:铁路建设项目甲供物资目录
- 二年级期中家长会课件PPT
- 工资条(标准模版)
- 2023年江西南昌高新区社区工作者招聘54人(共500题含答案解析)笔试历年难、易错考点试题含答案附详解
- Module5 Unit1 Your bag is broken(说课稿)外研版(一起)英语五年级下册
- 中药斗谱排列方法 斗谱的编排原则
- 《海底两万里》1-47章练习题(含答案)
- GB/T 4744-2013纺织品防水性能的检测和评价静水压法
- GB/T 24267-2009建筑用阻燃密封胶
评论
0/150
提交评论