




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、整理课件整理课件 观察长方体,你能发现长方体的顶点,棱所观察长方体,你能发现长方体的顶点,棱所在的直线,以及侧面、底面之间的位置关系吗?在的直线,以及侧面、底面之间的位置关系吗?ABABCDCD 长方体由上下、前后、长方体由上下、前后、左右六个面围成左右六个面围成 有些面是平行的,有些有些面是平行的,有些面是相交的;有些棱所在直面是相交的;有些棱所在直线与面平行,有些棱所在直线与面平行,有些棱所在直线与面相交,每条棱所在的线与面相交,每条棱所在的直线都可以看成是某个平面直线都可以看成是某个平面内的直线,等等内的直线,等等整理课件 观察教室里的桌面、黑板面,它们呈现出怎样的观察教室里的桌面、黑板
2、面,它们呈现出怎样的形象?形象?整理课件 观察活动室里的地面,它呈现出怎样的形象?观察活动室里的地面,它呈现出怎样的形象?整理课件 观察海面,它又呈现出怎样的形象?观察海面,它又呈现出怎样的形象?整理课件 生活中的一些物体通常呈平面形,课桌面、生活中的一些物体通常呈平面形,课桌面、黑板面、海面都给我们以平面的形象你还能黑板面、海面都给我们以平面的形象你还能从生活中举出类似平面形的物体吗?从生活中举出类似平面形的物体吗? 几何里所说的几何里所说的“平面平面”(plane)就是从这)就是从这样的一些物体中抽象出来的,但是,几何里的样的一些物体中抽象出来的,但是,几何里的平面是无限延展的平面是无限延
3、展的整理课件 请你从适当的角度和距离观察教室里的桌请你从适当的角度和距离观察教室里的桌面、黑板面或门的表面,它们呈现出怎样的形面、黑板面或门的表面,它们呈现出怎样的形象?象?整理课件 我们常常把水平的平面画成一个平行四边我们常常把水平的平面画成一个平行四边形,用平行四边形表示平面形,用平行四边形表示平面 平行四边形的锐角通常画成平行四边形的锐角通常画成45,且横边,且横边长等于其邻边长的长等于其邻边长的2倍倍DCAB整理课件ADCBEF被遮挡部分被遮挡部分用虚线表示用虚线表示 为了增强立体感,常常把被遮挡部分用虚为了增强立体感,常常把被遮挡部分用虚线画出来线画出来整理课件DCAB平面平面ABC
4、D平面平面AC或平面或平面BDADCBEF平面平面记作:记作:平面平面记作:记作:平面平面 常把希腊字母常把希腊字母、等写在代表平面的平行四边等写在代表平面的平行四边形的一个角上,如平面形的一个角上,如平面、平面、平面等;也可以用代表平等;也可以用代表平面的四边形的四个顶点,或者相对的两个顶点的大写面的四边形的四个顶点,或者相对的两个顶点的大写英文字母作为这个平面的名称英文字母作为这个平面的名称整理课件AB点点A在平面在平面 内,内,记作记作 AB记作记作 点点B在平面在平面 外,外,读作读作读作读作 平面内有无数个点,平面内有无数个点,平面可以看成点的集合平面可以看成点的集合点点在平面内和点
5、在平面外都可以用元素与集合的属于、在平面内和点在平面外都可以用元素与集合的属于、不属于关系来表示不属于关系来表示整理课件 如果直线如果直线 l 与平面与平面有一个公共点有一个公共点P,直线,直线 l 是否在是否在平面平面内?内?整理课件 实际生活中,我们有这样的经验:把一根直尺边实际生活中,我们有这样的经验:把一根直尺边缘上的任意两点放到桌面上,可以看到,直尺的整个缘上的任意两点放到桌面上,可以看到,直尺的整个边缘就落在了桌面上边缘就落在了桌面上 如果直线如果直线 l 与平面与平面有两个公共点,直线有两个公共点,直线 l 是否是否在平面在平面内?内?整理课件 公理公理1 1 如果一条直线上的两
6、点在一个平面内,如果一条直线上的两点在一个平面内,那么这条直线在此平面内那么这条直线在此平面内ABllBAlBlA,作用:作用:判定直线是否在平面内判定直线是否在平面内 在生产、生活中,在生产、生活中,人们经过长期观察与实人们经过长期观察与实践,总结出关于平面的践,总结出关于平面的一些基本性质,我们把一些基本性质,我们把它作为公理这些公理它作为公理这些公理是进一步推理的基础是进一步推理的基础整理课件AlABlAl点点A在直线在直线l上上点A在直线l外AllAlA直线直线l在平面在平面 外外l直线直线l在平面在平面 内内平面平面 经过直线经过直线ll整理课件 生活中经常看到用三角架支撑照相生活中
7、经常看到用三角架支撑照相机机整理课件 测量员用三角架支撑测量用的平板测量员用三角架支撑测量用的平板仪仪整理课件 公理公理2 2 过不在一条直线上的三点,有且只有一个过不在一条直线上的三点,有且只有一个平面平面ACB存在性存在性唯一性唯一性作用:作用: 确定平面的主要依据确定平面的主要依据 不再一条直线上的三个点不再一条直线上的三个点A、B、C所确定的平面,所确定的平面,可以记成可以记成“平面平面ABC”整理课件 把三角板的一个角立在课桌面上,三角板所在平把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面是否只相交于一点面与桌面所在平面是否只相交于一点B?为什么?为什么?B整理课件B 把
8、三角板的一个角立在课桌面上,三角板所在平把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面是否只相交于一点面与桌面所在平面是否只相交于一点B B?为什么?为什么?整理课件 观察长方体,你能发现长方体的两个相交平观察长方体,你能发现长方体的两个相交平面有没有公共直线吗?面有没有公共直线吗?ABABCDCD 这条公共直线这条公共直线BC叫做这两叫做这两个平面个平面ABCD和平面和平面BBCC的的交线交线 另一方面,相邻两个平面有另一方面,相邻两个平面有一个公共点,如平面一个公共点,如平面ABCD和和平面平面BBCC有一个公共点有一个公共点B,经,经过点过点B有且只有一条过该点的公共有且只有
9、一条过该点的公共直线直线BC.整理课件 公理公理3 3 如果两个不重合的平面有一个公共点,如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线那么它们有且只有一条过该点的公共直线lPlP且,作用:作用:判断两个平面相交的依据判断两个平面相交的依据判断点在直线上判断点在直线上lP整理课件 例例1 1 如图,用符号表示下列图形中点、直线、平如图,用符号表示下列图形中点、直线、平面之间的位置关系面之间的位置关系alABalPb(1)(2)解:在(解:在(1 1)中,)中,.,BaAal.,PlbPlabal在(在(2 2)中,)中,整理课件 在正方体在正方体 中,判断下列命题是否中
10、,判断下列命题是否正确,并说明理由:正确,并说明理由:1111DCBAABCD1AC直线直线 在平面在平面 内;内;BBCC11A1AB1BC1CD1D错误错误整理课件 在正方体在正方体 中,判断下列命题是否中,判断下列命题是否正确,并说明理由:正确,并说明理由:1111DCBAABCD 设正方形设正方形ABCD与与 的中心分别为的中心分别为O, ,则平面则平面 与平面与平面 的交线为的交线为 ;1111DCBA1OCCAA11DDBB111OOA1AB1BC1CD1DO1O正确正确整理课件 在正方体在正方体 中,判断下列命题是否中,判断下列命题是否正确,并说明理由:正确,并说明理由:1111DCBAABCD由点由点A,O,C可以确定一个平面;可以确定一个平面;A1AB1BC1CD1DO错误错误整理课件 在正方体在正方体 中,判断下列命题是否正中,判断下列命题是否正确,并说明理由:确,并说明理由:1111DCBAABCD由由 确定的平面是确定的平面是 ;11,BCA11B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025如何规避合同纠纷风险-租赁合同范本解析
- 2025年国家电网招聘之文学哲学类真题练习试卷B卷附答案
- 初中历史明朝的对外关系 课件 +2024-2025学年统编版七年级历史下册
- 生殖器湿疹的临床护理
- 2025年涂装车间承包合同
- 2025销售经理合同样本
- 2025年签订股权转让合同:注意风险转移的关键点
- 2025保密协议书合同范本
- 深圳初三上册英语期末试卷及答案
- 陕西汉阴中考试卷及答案
- GB/Z 42217-2022医疗器械用于医疗器械质量体系软件的确认
- GB/T 9799-1997金属覆盖层钢铁上的锌电镀层
- 医师定期考核口腔题库
- 尾矿库基本知识课件
- 学生自我陈述兴趣特长发展潜能生涯规划500字
- 少年中国说五线谱乐谱
- 《酸碱中和反应》上课课件(省级优质课获奖作品)
- 消防器材每月定期检查记录表
- 酒店员工服务礼仪规范培训模板
- 量化策略设计及实战应用PPT通用课件
- 【证券】金融市场基础知识(完整版讲义)
评论
0/150
提交评论