【全程复习方略】(广西专用)2013版高中数学11.2互斥事件有一个发生的概率课时提能训练文新人教版_第1页
【全程复习方略】(广西专用)2013版高中数学11.2互斥事件有一个发生的概率课时提能训练文新人教版_第2页
免费预览已结束,剩余8页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、-1 -【全程复习方略】(广西专用)2013 版高中数学 11.2 互斥事件有一个发生的概率课时提能训练文新人教版(45 分钟 100 分)一、选择题(每小题 6 分,共 36 分)1.甲:A、A2是互斥事件;乙:A、A2是对立事件,那么()(A) 甲是乙的充分条件但不是必要条件(B) 甲是乙的必要条件但不是充分条件(C) 甲是乙的充要条件(D) 甲既不是乙的充分条件也不是乙的必要条件2.将一颗质地均匀的 骰子(它是一种各面上分别标有点数1、2、3、4、5、6 的正方体玩具)先后抛掷 3 次,至少出现一次 6 点向上的概率是()5253191(A) 216(B)216(C)216(D)2163

2、.10 张奖券中只有 3 张有奖,5 个人购买,每人 1 张,至少有一人中奖的概率是( )31111(A)命(B)正 (C) 2(D)正4.某商场开展促销抽奖活动,摇奖器摇出的一组中奖号码是8、2、5、3、7、1,参加抽奖的每位顾客从0、1、2、3、4、5、6、7、8、9 这十个号码中任意抽出六个组成一组,如果顾客抽出的六个号码中至少有5个与摇奖器摇出的号码相同(不计顺序)就可以得奖,一位顾客可能抽出的不同号码组共有m 组,其中可以n中奖的号码组共有 n 组,则 m 的值为()1145(A)7(B)30(C)35(D)42m 和 n,记向量 a = (m, n)与向量 b = (1 , - 1

3、)的夹角为0,n则0 (0 ,刁的概率是()517(A) 12(B)2(C)石6.(易错题)从 1,2,3,4,5,6,7,8,9,10个号码是连续整数的概率为()78875.(预测题)连掷两次骰子得到的点数分别为(D)6这 10 个号码中任意抽取 3 个号码,则所抽取的 3 个号码中,仅有两-2 -(A)亦(B)185(C)183(D)173二、填空题(每小题 6 分,共 18 分)7. 一盒中装有 20 个大小相同的小球,其中红球10 个,白球 6 个,黄球 4 个,一小孩 随手拿出 4 个,则至少有 3 个红球的概率为 _.8. 下列三行三列的方阵中有9 个数 aij(i = 1,2,3

4、 ; j = 1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是_.用11a12a13、&a22a23a32a33 /9将一个各个面上均涂有颜色的正方体锯成27 个同样大小的小正方体,从这些小正方体中任取1 个,其中至少涂有两面颜色的概率是 _.三、解答题(每小题 15 分,共 30 分)10.(2012 南宁模拟)国家射击队的队员为在2012 年伦敦奥运会上取得优异成绩,正在加紧备战,经过近期训练,某队员射击一次,命中710 环的概率如表所示:命中环数10 环9 环8 环7 环概率0.320.280.180.12求该射击队员射击一次(1)命中 9 环或 10 环的概率;至少命

5、中 8 环的概率;命中不足 8 环的概率.11.(2012 柳州模拟)甲乙两人各有相同的小球10 个,在每人的 10 个小球中都有 5 个标有数字 1,3 个标 有数字 2,2 个标有数字 3.两人同时分别从自己的小球中任意抽取1 个,规定:若抽取的两个小球上的数字相同,则甲获胜,否则乙获胜,求乙获胜的概率【探究创新】(16 分)有人玩掷硬币走跳棋的游戏,已知硬币出现正反面为等可能性事件,棋盘上标有第0 站,第 1 站,第 2 站,第 100 站,一枚棋子开始在第0 站,棋手每掷一次硬币,棋子向前跳动一次,若掷出正面,棋向前跳一站(从 k 到 k+ 1),若掷出反面,棋向前跳两站(从 k 到

6、k+ 2),直到棋子跳到第 99 站(胜利大-3 -本营)或跳到第 100 站(失败集中营)时,该游戏结束.设棋子跳到第 n 站概率为 Pn.(1)求 Po, R, P2的值;1(2)求证:R Pn1= -2(Pn1 Pn2),其中 n N, 2 nW99;-4 -求 F9g及 Poo的值.答案解析1. 【解析】选 B.本题考查互斥事件与对立事件之间的关系.Ai、A是对立事件,一定能推出 A、A是互斥事件;反之不一定成立,所以甲是乙的必要条件但不是充分条件,故选B .2. 【解题指南】 解决“至少” 问题可以利用对立事件的概率公式求解.【解析】选 D.质地均匀的骰子先后抛掷3 次,共有 6X6

7、X6 种结果.3 次均不出现 6 点向上的掷法有 5X55X5X5125X5 种结果.由于抛掷的每一种结果都是等可能出现的,所以不出现 6 点向上的概率为= ,由对6X6X6216立事件概率公式,知 3 次至少出现一次 6 点向上的概率是125911 =216 2164.【解析】选 D.n=C6mQ6C10n5.【解题指南】 向量 a = (m, n)与向量 b= (1 , - 1)的夹角为(0 ,三,即 0 n.1-(36 6) + 62217所求概率为 P= 6X6= 36= 12.故选 C.6.【解题指南】 审题要仔细,要理解“仅有两个号码是连续整数”的含义3.【解析】选 D.5 人购买

8、,每人1 张,都不中奖的概率为A1A;。因此至少有一人中奖的概率是A51-證1112,故选D.542.【解析】选 C. / cos0a b| a | b|m- n.2(m2+ n2),-5 -【解析】选 A. “3 个号码中,仅有两个号码是连续整数”可以分两步得到.先抽取两个连 续号码,有 9 种不同的情况:(1,2) , (2,3) , (3,4) , (4,5) , (5,6) , (6,7) , (7,8) , (8,9) , (9,10),然后再从剩下的号-6 -码中抽取一个与前两个号码不相邻的号码:若抽取的前两个号码是(1,2)或(9,10),则第 3 个号码有 7 种不同的抽法;若

9、抽取的前两个号码是(2,3),(3,4),(4,5) ,(5,6) ,(6,7) ,(7,8) ,(8,9)中的一种,贝 UC4P2=10=C4至少有 3 个红球的概率:94答案:323【方法技巧】 互斥事件概率的解题技巧 解决与互斥事件有关的问题时, 首先要分清所求事件是由哪些基本事件组成的,然后结合互斥事件的定义分析出是否是互斥事件,再决定用哪一个公式运用互斥事件的概率公式解题时,不仅要能分清事件间是否互斥,同时要学会把一个事件拆成几个互斥事件,但应注意考虑周全,不重复不遗漏【提醒】要善于利用对立事件公式解题8.【解析】从 9 个数 a。中任取 3 个数的取法有 9种,其中没有任何两数同行

10、或同列的取法有 6 种,故所613求概率为 13=.13答案:771412+8209.【解析】P= 8=-.C;727答案:务10. 【解析】记事件“射击一次,命中k 环”为 A(k N, kw10),则事件A彼此互斥.(1) 记“射击一次,命中 9 环或 10 环”为事件 A,那么当 Ao, A10之一发生时,事件 A 发生,由互斥事件的 概率加法公式得P(A) = P(A0 + P(Ae) = 0.28 + 0.32 = 0.60.(2) 设“射击一次,至少命中 8 环”的事件为 B,那么当 A8, A9, Aw 之一发生时,事件 B 发生.第 3 个号码有 6 种不同的抽法所以满足条件的

11、抽法共有2X7 + 7X6= 56 种,故所求的概率为p=C607.【解析】恰有 3 个红球的概率:C3C1Pi=C10C10C480323.有 4 个红球的概率:14323.P= P1+ P2=94323.-7 -由互斥事件的概率加法公式得P(B) = P(A8)+ P(Ag) + P(Ae) = 0.18 + 0.28 + 0.32 = 0.78.-8 -(3)由于事件“射击一次,命中不足8 环”是事件 B: “射击一次,至少命中 8环”的对立事件,即 B 表示事件“射击一次,命中不足8 环”,根据对立事件的概率公式得P( B) = 1 P(B) = 1 0.78 = 0.22.【变式备选

12、】 从 1、2、3、4、5、& 9 这 7 个数中任取三个数,共有35 种不同的取法(两种取法不同指的是一种取法中至少有一个数与另一种取法中的三个数都不相同).(1) 求取出的三个数能够组成等比数列的概率;(2) 求取出的三个数的乘积能被2 整除的概率.【解析】(1)从 1、2、3、4、5、8、9 这 7 个数中任取三个数,每一种不同的取法为一个基本事件,由题 意可知共有35 个基本事件.设取出的三个数能组成等比数列的事件为A, A 包含(1,2,4)、(2,4,8) 、(1,3,9)共 3 个基本事件3由于每个基本事件出现的可能性相等,所以P(A)=.35设取出的三个数的乘积能被2 整除的事

13、件为 B,其对立事件为C, C 包含(1,3,5) 、(1,3,9) 、(1,5,9)(3,5,9)共 4 个基本事件.由于每个基本事件出现的可能性相等,所以431所以 P(B) = 1P(C)= 1 35=35.11.【解析】先考虑甲获胜的概率,甲获胜有以下几种情况:答:乙获胜的概率为 0.62.【探究创新】【解析】(1)棋子开始在第 0 站为必然事件, Po= 1.P(C)= 35(1)两个小球上的数字均为 1,此时,甲获胜的概率为5X5=110X10=4.(2) 两个小球上的数字均为(3) 两个小球上的数字均为2,此时,甲获胜的概率为3,此时,甲获胜的概率为3X3=210X10=100.

14、2X2110X10=25.所以甲获胜的概率P= 4+9119100+25 = 50=0.38故乙获胜的概率为311P=矿0弦-9 -1第一次掷硬币出现正面,棋子跳到第1 站,其概率为,1 P1=-.棋子跳到第 2 站应从如下两方面考虑:前两次掷硬币都出现正面,其概率为4;-10 -(2)棋子跳到第 n(2 n 99)站的情况有下列两种,而且也只有两种:棋子先到第 n 2 站,又掷出反面,1其概率为Pn-2;1棋子先到第 n 1 站,又掷出正面,其概率为 2Pn-1.11-Pn= Pn2+ Pn1221R R1= 一 2(Pn1一 Pn2).(3)由知,当 1 nW99 时,数列Pn Pn1是首项为 P1 Po= 2,公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论