




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第三章 一阶微分方程的解的存在定理3-1 求下列初值问题的近似解。1) 求初值问题的第三次近似解;2) 求初值问题的第二次近似解。解 由解的存在唯一性定理知,1),2)中的初值问题的解分别在,的邻域内存在且唯一。下面求它们的近似解。1) , ,。2) , 。评注:逐次逼近函数序列,在实际中有广泛的应用。利用此序列求近似解时,须验证初值问题的解存在唯一,否则求出的结果可能并不是我们想要的近似解。3-2 设,求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计。解 设,显然,方程在上满足解的存在唯一性定理,则,所以,方程过点的解的存在区间为:,即。设是初值问题 的解,是第二次近
2、似解,则, 。在区间上,与的误差为,取 ,所以 。评注:需要掌握第次近似解和真正解在区间内的误差估计公式,在进行近似计算时,可以根据误差的要求,选取适当的逐步逼近函数。3-3 讨论方程在怎样的区域中满足解的存在唯一性定理的条件,并求通过点的一切解。解 设,则,故在的任何区域上存在且连续,因而方程在这样的区域中满足解的存在唯一性定理的条件。显然,是通过点的一个解;又由方程得 。所以通过点的一切解为及。评注:寻找解的存在唯一性定理中的条件所满足的区域,就是寻找连续和关于满足利普希兹条件的区域,困难在于利普希兹条件的验证,除用定义外,还常用下面的结论:在上存在且有界,则 在上关于满足利普希兹条件。在
3、上存在且无界,则 在上关于不满足利普希兹条件。其中为某矩形区域。3-4 证明格朗瓦耳(Gronwall)不等式:设为非负常数,和为在区间上的连续非负函数,且满足不等式,则有。并由此证明定理3.1中的唯一性结论。证 1)时,令则。由可得,两边从到积分得即有所以即有。2)时,对任意,由于 所以由1)有 当时,有。因为,即得,从而综上所述,不等式成立。唯一性的证明。设是初值问题的两个解,则有,。于是,其中为利普希兹常数,由上面的不等式可知,因而有。评注:格朗瓦耳不等式是微分方程中的重要不等式,表明积分不等式与其解的关系。用格朗瓦耳不等式证明微分方程初值问题解的唯一性是一个很好的方法。3-5 假定函数
4、于的邻域内是的不增函数,试证初值问题 (1)在一侧最多只有一个解。证 设初值问题(2)存在两个解,要证当时,有。反证法。若当时,不恒为零,即存在,使得,不妨设,由的连续性及,知必存在,使得及,则有 ,。而 ,其中。由及对的不增性,知,这与矛盾。因此,对,有。评注:此结论并没有给出初值问题解的存在性,只保证了如果初值问题有解,解必唯一。3-5 假设函数在区域内连续并满足局部李普希兹条件及;又方程的满足初始条件的解对一切有定义,试证下列说法是等价的:(1) 任给,可以找到正数,使当时,对一切有;(2) 任给及,存在正数,使当时,对一切有。证 因函数在区域内连续并满足局部李普希兹条件,故方程的满足初
5、始条件的解在区域内唯一存在且连续地依赖于初值。又由知,方程在内有零解。先证,由(1),存在,使当时,对一切有成立。当然,对,有成立,因而存在,使得,这时,对一切,仍有。再证由(2),对任给和,存在,使,对一切,有,因为方程的解在内连续依赖于初值,故对已给,存在使当时,在区间上,有。又过点的解唯一且连续光滑,故对任给,存在,当时,对一切,均有成立。3-6 假设函数及都在区域内连续,又是方程满足初始条件的解,试证存在且连续,并写出其表达式。证 1)因及都在区域内连续,则在内满足局部利普希兹条件,故解在它的存在范围内对连续。2)设由初值和足够小,所确定的解分别为和,则这两个解均满足积分方程 。即 和
6、,所以其中是关于的连续函数,且当时,于是有,即是初值问题 的解,因此是的连续函数。由上边微分方程解得,故存在,显然,它是的连续函数。评注:我们看到,在表达式中,包含有方程满足初始条件的解,一般来说,初值问题解的表达式很难得到,因此,偏导数公式的实际应用并不广泛,但理论上表明初值问题解对初值的连续可微性。3-7 假设函数和于区间上连续,试证方程满足初始条件的解,作为的函数于区域上存在连续偏导数,并写出其表达式。证 因是方程满足初始条件的解,故有。视为的函数,即有,又关于连续,故存在且连续。 设由初值和所确定的解分别为和,则,即是初值问题 的解,因此是的连续函数。解上方程得,故存在 ,显然,它在其
7、存在范围内连续。 设由初值和所确定的解分别为和 则,其中是关于的连续函数,且当时,于是有,即是初值问题 的解,因此是的连续函数,解上方程得,所以,在其存在范围内连续。评注:本题也可直接用3-7题的结果得到证明。可以看到,对于线性方程,初值问题的解对初值的各个一阶偏导数只与初值有关,而与初值问题解的表达式无关,应用较为广泛。xoy3-8 求曲线族的包络,并绘出图形。解 从消去,得判别曲线为 。 图3-1经检验曲线 是曲线族的包络。如上图3-1所示。评注:采用判别曲线法求单参数曲线族的包络必须进行检验。3-9 求解方程。解 将原方程变形为,这是克莱罗方程,故其通解为 。由 消去得到判别曲线,经检验
8、曲线是方程的奇解。评注:一阶隐式微分方程的解除过通解,有时还有奇解。一阶微分方程的奇解(如果存在的话)是该方程通解的包络,反之,一阶微分方程通解的包洛(如果存在的话) 是该方程的奇解。因而为了求微分方程的奇解,先求出它的通解,然后采用判别曲线法求单参数曲线族的包络。从本例中还可以看到,如果只需求微分方程的奇解,我们还可采用判别曲线法,同样必须进行检验。3-10 试证:就克莱罗方程来说,判别曲线和方程通解的判别曲线同样是方程通解的包络,从而为方程的奇解。证 易知克莱罗方程 (1)的通解为 (2)判别曲线为 (3)证明判别曲线上每一点都有方程的通解中的一条曲线通过。设任给(3)的参数值,则它对应于(3)上的点为再在(2)中选任意常数,则它所对应的特解为 (4)在曲线(4)上取时,所对应的为这就是说,对于曲线(3)上每一点,有曲线族(2)中的一条曲线(4)通过。 证明判别曲线与方程通解中的通过同一点的曲线在该点相切。由(3)得故(4)与(2)在判别曲线上每一点的斜率都相同。 证明方程通解的包络线(或方程的奇解)不包含在方程通解中。因(2)是一直线族,(3)是以为斜率的曲线,对于不同的值,曲线(3)上的点处的斜率不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 半永久纹眉的临床护理
- 2025签订租赁合同后的权利
- 陕西中考试卷答案及解析化学试题
- 肇庆市实验中学高中历史二:第课战后资本主义世界经济体系的形成(第课时)高效课堂教学设计
- 《前列腺增生导致的尿潴留护理策略》课件
- 棉花机械化生产效率提升考核试卷
- 化纤浆粕在医疗植入材料中的生物相容性考核试卷
- 电力设备在线振动监测考核试卷
- 空调器制冷性能稳定性研究考核试卷
- 毛发染整行业智能化生产与信息化管理考核试卷
- 北京市人民大附属中学2025届中考化学模拟试卷含解析
- 网线施工方案
- 2025年陕西省公民科学素质大赛考试题(附答案)
- 浙江首考2025年1月普通高等学校招生全国统考政治试题及答案
- DB3308-T 102-2022 居民碳账户-生活垃圾资源回收碳减排工作规范
- 《设计的可持续发展》课件
- 高考英语必背800高频词汇素材
- 舞龙服务合同
- 医院培训课件:《静脉留置针的应用及维护》
- 女性盆腔炎性疾病中西医结合诊治指南
- 风险研判管理制度(4篇)
评论
0/150
提交评论